Metamath Proof Explorer


Theorem rpne0

Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008)

Ref Expression
Assertion rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 rpregt0 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
2 gt0ne0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
3 1 2 syl ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )