Step |
Hyp |
Ref |
Expression |
1 |
|
nnex |
⊢ ℕ ∈ V |
2 |
|
qex |
⊢ ℚ ∈ V |
3 |
1 2
|
rpnnen1 |
⊢ ℝ ≼ ( ℚ ↑m ℕ ) |
4 |
|
qnnen |
⊢ ℚ ≈ ℕ |
5 |
1
|
canth2 |
⊢ ℕ ≺ 𝒫 ℕ |
6 |
|
ensdomtr |
⊢ ( ( ℚ ≈ ℕ ∧ ℕ ≺ 𝒫 ℕ ) → ℚ ≺ 𝒫 ℕ ) |
7 |
4 5 6
|
mp2an |
⊢ ℚ ≺ 𝒫 ℕ |
8 |
|
sdomdom |
⊢ ( ℚ ≺ 𝒫 ℕ → ℚ ≼ 𝒫 ℕ ) |
9 |
|
mapdom1 |
⊢ ( ℚ ≼ 𝒫 ℕ → ( ℚ ↑m ℕ ) ≼ ( 𝒫 ℕ ↑m ℕ ) ) |
10 |
7 8 9
|
mp2b |
⊢ ( ℚ ↑m ℕ ) ≼ ( 𝒫 ℕ ↑m ℕ ) |
11 |
1
|
pw2en |
⊢ 𝒫 ℕ ≈ ( 2o ↑m ℕ ) |
12 |
1
|
enref |
⊢ ℕ ≈ ℕ |
13 |
|
mapen |
⊢ ( ( 𝒫 ℕ ≈ ( 2o ↑m ℕ ) ∧ ℕ ≈ ℕ ) → ( 𝒫 ℕ ↑m ℕ ) ≈ ( ( 2o ↑m ℕ ) ↑m ℕ ) ) |
14 |
11 12 13
|
mp2an |
⊢ ( 𝒫 ℕ ↑m ℕ ) ≈ ( ( 2o ↑m ℕ ) ↑m ℕ ) |
15 |
|
domentr |
⊢ ( ( ( ℚ ↑m ℕ ) ≼ ( 𝒫 ℕ ↑m ℕ ) ∧ ( 𝒫 ℕ ↑m ℕ ) ≈ ( ( 2o ↑m ℕ ) ↑m ℕ ) ) → ( ℚ ↑m ℕ ) ≼ ( ( 2o ↑m ℕ ) ↑m ℕ ) ) |
16 |
10 14 15
|
mp2an |
⊢ ( ℚ ↑m ℕ ) ≼ ( ( 2o ↑m ℕ ) ↑m ℕ ) |
17 |
|
2onn |
⊢ 2o ∈ ω |
18 |
|
mapxpen |
⊢ ( ( 2o ∈ ω ∧ ℕ ∈ V ∧ ℕ ∈ V ) → ( ( 2o ↑m ℕ ) ↑m ℕ ) ≈ ( 2o ↑m ( ℕ × ℕ ) ) ) |
19 |
17 1 1 18
|
mp3an |
⊢ ( ( 2o ↑m ℕ ) ↑m ℕ ) ≈ ( 2o ↑m ( ℕ × ℕ ) ) |
20 |
17
|
elexi |
⊢ 2o ∈ V |
21 |
20
|
enref |
⊢ 2o ≈ 2o |
22 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
23 |
|
mapen |
⊢ ( ( 2o ≈ 2o ∧ ( ℕ × ℕ ) ≈ ℕ ) → ( 2o ↑m ( ℕ × ℕ ) ) ≈ ( 2o ↑m ℕ ) ) |
24 |
21 22 23
|
mp2an |
⊢ ( 2o ↑m ( ℕ × ℕ ) ) ≈ ( 2o ↑m ℕ ) |
25 |
19 24
|
entri |
⊢ ( ( 2o ↑m ℕ ) ↑m ℕ ) ≈ ( 2o ↑m ℕ ) |
26 |
25 11
|
entr4i |
⊢ ( ( 2o ↑m ℕ ) ↑m ℕ ) ≈ 𝒫 ℕ |
27 |
|
domentr |
⊢ ( ( ( ℚ ↑m ℕ ) ≼ ( ( 2o ↑m ℕ ) ↑m ℕ ) ∧ ( ( 2o ↑m ℕ ) ↑m ℕ ) ≈ 𝒫 ℕ ) → ( ℚ ↑m ℕ ) ≼ 𝒫 ℕ ) |
28 |
16 26 27
|
mp2an |
⊢ ( ℚ ↑m ℕ ) ≼ 𝒫 ℕ |
29 |
|
domtr |
⊢ ( ( ℝ ≼ ( ℚ ↑m ℕ ) ∧ ( ℚ ↑m ℕ ) ≼ 𝒫 ℕ ) → ℝ ≼ 𝒫 ℕ ) |
30 |
3 28 29
|
mp2an |
⊢ ℝ ≼ 𝒫 ℕ |
31 |
|
rpnnen2 |
⊢ 𝒫 ℕ ≼ ( 0 [,] 1 ) |
32 |
|
reex |
⊢ ℝ ∈ V |
33 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
34 |
|
ssdomg |
⊢ ( ℝ ∈ V → ( ( 0 [,] 1 ) ⊆ ℝ → ( 0 [,] 1 ) ≼ ℝ ) ) |
35 |
32 33 34
|
mp2 |
⊢ ( 0 [,] 1 ) ≼ ℝ |
36 |
|
domtr |
⊢ ( ( 𝒫 ℕ ≼ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ≼ ℝ ) → 𝒫 ℕ ≼ ℝ ) |
37 |
31 35 36
|
mp2an |
⊢ 𝒫 ℕ ≼ ℝ |
38 |
|
sbth |
⊢ ( ( ℝ ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ ℝ ) → ℝ ≈ 𝒫 ℕ ) |
39 |
30 37 38
|
mp2an |
⊢ ℝ ≈ 𝒫 ℕ |