| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen1.n |
⊢ ℕ ∈ V |
| 2 |
|
rpnnen1.q |
⊢ ℚ ∈ V |
| 3 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 / 𝑘 ) = ( 𝑛 / 𝑘 ) ) |
| 4 |
3
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 / 𝑘 ) < 𝑥 ↔ ( 𝑛 / 𝑘 ) < 𝑥 ) ) |
| 5 |
4
|
cbvrabv |
⊢ { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
| 6 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑚 / 𝑗 ) = ( 𝑚 / 𝑘 ) ) |
| 7 |
6
|
breq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑚 / 𝑗 ) < 𝑦 ↔ ( 𝑚 / 𝑘 ) < 𝑦 ) ) |
| 8 |
7
|
rabbidv |
⊢ ( 𝑗 = 𝑘 → { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } = { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } ) |
| 9 |
8
|
supeq1d |
⊢ ( 𝑗 = 𝑘 → sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) = sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) ) |
| 10 |
|
id |
⊢ ( 𝑗 = 𝑘 → 𝑗 = 𝑘 ) |
| 11 |
9 10
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) = ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) ) |
| 12 |
11
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) ) |
| 13 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑚 / 𝑘 ) < 𝑦 ↔ ( 𝑚 / 𝑘 ) < 𝑥 ) ) |
| 14 |
13
|
rabbidv |
⊢ ( 𝑦 = 𝑥 → { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } = { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } ) |
| 15 |
14
|
supeq1d |
⊢ ( 𝑦 = 𝑥 → sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) = sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) = ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) |
| 17 |
16
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑦 } , ℝ , < ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) ) |
| 18 |
12 17
|
eqtrid |
⊢ ( 𝑦 = 𝑥 → ( 𝑗 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) ) |
| 19 |
18
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ ( 𝑗 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑗 ) < 𝑦 } , ℝ , < ) / 𝑗 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( { 𝑚 ∈ ℤ ∣ ( 𝑚 / 𝑘 ) < 𝑥 } , ℝ , < ) / 𝑘 ) ) ) |
| 20 |
5 19 1 2
|
rpnnen1lem6 |
⊢ ℝ ≼ ( ℚ ↑m ℕ ) |