Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
2 |
|
rpnnen1lem.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
3 |
|
rpnnen1lem.n |
⊢ ℕ ∈ V |
4 |
|
rpnnen1lem.q |
⊢ ℚ ∈ V |
5 |
3
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V |
6 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
8 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ⊆ ℤ |
9 |
1 8
|
eqsstri |
⊢ 𝑇 ⊆ ℤ |
10 |
9
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ⊆ ℤ ) |
11 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
12 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
13 |
12
|
ancoms |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
14 |
11 13
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
15 |
|
btwnz |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ( ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑘 · 𝑥 ) < 𝑛 ) ) |
16 |
15
|
simpld |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
17 |
14 16
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
18 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
20 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑥 ∈ ℝ ) |
21 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
22 |
11 21
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
24 |
|
ltdivmul |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
25 |
19 20 23 24
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
26 |
25
|
rexbidva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ↔ ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
27 |
17 26
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
28 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
30 |
1
|
neeq1i |
⊢ ( 𝑇 ≠ ∅ ↔ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
31 |
29 30
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ≠ ∅ ) |
32 |
1
|
rabeq2i |
⊢ ( 𝑛 ∈ 𝑇 ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) |
33 |
11
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
34 |
33 20 12
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
35 |
|
ltle |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑘 · 𝑥 ) ∈ ℝ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
36 |
19 34 35
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
37 |
25 36
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
38 |
37
|
impr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
39 |
32 38
|
sylan2b |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝑇 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
40 |
39
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
41 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
42 |
41
|
ralbidv |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
43 |
42
|
rspcev |
⊢ ( ( ( 𝑘 · 𝑥 ) ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
44 |
14 40 43
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
45 |
|
suprzcl |
⊢ ( ( 𝑇 ⊆ ℤ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
46 |
10 31 44 45
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
47 |
9 46
|
sselid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℤ ) |
48 |
|
znq |
⊢ ( ( sup ( 𝑇 , ℝ , < ) ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ ℚ ) |
49 |
47 48
|
sylancom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ ℚ ) |
50 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
51 |
49 50
|
fmptd |
⊢ ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) : ℕ ⟶ ℚ ) |
52 |
4 3
|
elmap |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) : ℕ ⟶ ℚ ) |
53 |
51 52
|
sylibr |
⊢ ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ ( ℚ ↑m ℕ ) ) |
54 |
7 53
|
eqeltrd |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |