Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
2 |
|
rpnnen1lem.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
3 |
|
rpnnen1lem.n |
⊢ ℕ ∈ V |
4 |
|
rpnnen1lem.q |
⊢ ℚ ∈ V |
5 |
3
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V |
6 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) ) |
9 |
|
ovex |
⊢ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V |
10 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
11 |
10
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
12 |
9 11
|
mpan2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
13 |
8 12
|
sylan9eq |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
14 |
1
|
rabeq2i |
⊢ ( 𝑛 ∈ 𝑇 ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) |
15 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
17 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑥 ∈ ℝ ) |
18 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
19 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
20 |
18 19
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
22 |
|
ltdivmul |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
23 |
16 17 21 22
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
24 |
18
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
25 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
26 |
24 17 25
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
27 |
|
ltle |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑘 · 𝑥 ) ∈ ℝ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
28 |
16 26 27
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
29 |
23 28
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
30 |
29
|
impr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
31 |
14 30
|
sylan2b |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝑇 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
32 |
31
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
33 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ⊆ ℤ |
34 |
1 33
|
eqsstri |
⊢ 𝑇 ⊆ ℤ |
35 |
|
zssre |
⊢ ℤ ⊆ ℝ |
36 |
34 35
|
sstri |
⊢ 𝑇 ⊆ ℝ |
37 |
36
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ⊆ ℝ ) |
38 |
25
|
ancoms |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
39 |
18 38
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
40 |
|
btwnz |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ( ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑘 · 𝑥 ) < 𝑛 ) ) |
41 |
40
|
simpld |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
42 |
39 41
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
43 |
23
|
rexbidva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ↔ ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
44 |
42 43
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
45 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
46 |
44 45
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
47 |
1
|
neeq1i |
⊢ ( 𝑇 ≠ ∅ ↔ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
48 |
46 47
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ≠ ∅ ) |
49 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
50 |
49
|
ralbidv |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
51 |
50
|
rspcev |
⊢ ( ( ( 𝑘 · 𝑥 ) ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
52 |
39 32 51
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
53 |
|
suprleub |
⊢ ( ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) ∧ ( 𝑘 · 𝑥 ) ∈ ℝ ) → ( sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
54 |
37 48 52 39 53
|
syl31anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
55 |
32 54
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ) |
56 |
1 2
|
rpnnen1lem2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℤ ) |
57 |
56
|
zred |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
58 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
59 |
20
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
60 |
|
ledivmul |
⊢ ( ( sup ( 𝑇 , ℝ , < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ≤ 𝑥 ↔ sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ) ) |
61 |
57 58 59 60
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ≤ 𝑥 ↔ sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ) ) |
62 |
55 61
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ≤ 𝑥 ) |
63 |
13 62
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) |
64 |
63
|
ralrimiva |
⊢ ( 𝑥 ∈ ℝ → ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) |
65 |
1 2 3 4
|
rpnnen1lem1 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
66 |
4 3
|
elmap |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
67 |
65 66
|
sylib |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
68 |
|
ffn |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( 𝐹 ‘ 𝑥 ) Fn ℕ ) |
69 |
|
breq1 |
⊢ ( 𝑛 = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) → ( 𝑛 ≤ 𝑥 ↔ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
70 |
69
|
ralrn |
⊢ ( ( 𝐹 ‘ 𝑥 ) Fn ℕ → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
71 |
67 68 70
|
3syl |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
72 |
64 71
|
mpbird |
⊢ ( 𝑥 ∈ ℝ → ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) |