Metamath Proof Explorer


Theorem rpnnen1lem4

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 }
rpnnen1lem.2 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) )
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion rpnnen1lem4 ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹𝑥 ) , ℝ , < ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 }
2 rpnnen1lem.2 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) )
3 rpnnen1lem.n ℕ ∈ V
4 rpnnen1lem.q ℚ ∈ V
5 1 2 3 4 rpnnen1lem1 ( 𝑥 ∈ ℝ → ( 𝐹𝑥 ) ∈ ( ℚ ↑m ℕ ) )
6 4 3 elmap ( ( 𝐹𝑥 ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝐹𝑥 ) : ℕ ⟶ ℚ )
7 5 6 sylib ( 𝑥 ∈ ℝ → ( 𝐹𝑥 ) : ℕ ⟶ ℚ )
8 frn ( ( 𝐹𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹𝑥 ) ⊆ ℚ )
9 qssre ℚ ⊆ ℝ
10 8 9 sstrdi ( ( 𝐹𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹𝑥 ) ⊆ ℝ )
11 7 10 syl ( 𝑥 ∈ ℝ → ran ( 𝐹𝑥 ) ⊆ ℝ )
12 1nn 1 ∈ ℕ
13 12 ne0ii ℕ ≠ ∅
14 fdm ( ( 𝐹𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹𝑥 ) = ℕ )
15 14 neeq1d ( ( 𝐹𝑥 ) : ℕ ⟶ ℚ → ( dom ( 𝐹𝑥 ) ≠ ∅ ↔ ℕ ≠ ∅ ) )
16 13 15 mpbiri ( ( 𝐹𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹𝑥 ) ≠ ∅ )
17 dm0rn0 ( dom ( 𝐹𝑥 ) = ∅ ↔ ran ( 𝐹𝑥 ) = ∅ )
18 17 necon3bii ( dom ( 𝐹𝑥 ) ≠ ∅ ↔ ran ( 𝐹𝑥 ) ≠ ∅ )
19 16 18 sylib ( ( 𝐹𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹𝑥 ) ≠ ∅ )
20 7 19 syl ( 𝑥 ∈ ℝ → ran ( 𝐹𝑥 ) ≠ ∅ )
21 1 2 3 4 rpnnen1lem3 ( 𝑥 ∈ ℝ → ∀ 𝑛 ∈ ran ( 𝐹𝑥 ) 𝑛𝑥 )
22 breq2 ( 𝑦 = 𝑥 → ( 𝑛𝑦𝑛𝑥 ) )
23 22 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑛 ∈ ran ( 𝐹𝑥 ) 𝑛𝑦 ↔ ∀ 𝑛 ∈ ran ( 𝐹𝑥 ) 𝑛𝑥 ) )
24 23 rspcev ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ ran ( 𝐹𝑥 ) 𝑛𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹𝑥 ) 𝑛𝑦 )
25 21 24 mpdan ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹𝑥 ) 𝑛𝑦 )
26 suprcl ( ( ran ( 𝐹𝑥 ) ⊆ ℝ ∧ ran ( 𝐹𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹𝑥 ) 𝑛𝑦 ) → sup ( ran ( 𝐹𝑥 ) , ℝ , < ) ∈ ℝ )
27 11 20 25 26 syl3anc ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹𝑥 ) , ℝ , < ) ∈ ℝ )