Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
2 |
|
rpnnen1lem.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
3 |
|
rpnnen1lem.n |
⊢ ℕ ∈ V |
4 |
|
rpnnen1lem.q |
⊢ ℚ ∈ V |
5 |
1 2 3 4
|
rpnnen1lem3 |
⊢ ( 𝑥 ∈ ℝ → ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) |
6 |
1 2 3 4
|
rpnnen1lem1 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
7 |
4 3
|
elmap |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
8 |
6 7
|
sylib |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
9 |
|
frn |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℚ ) |
10 |
|
qssre |
⊢ ℚ ⊆ ℝ |
11 |
9 10
|
sstrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
12 |
8 11
|
syl |
⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
13 |
|
1nn |
⊢ 1 ∈ ℕ |
14 |
13
|
ne0ii |
⊢ ℕ ≠ ∅ |
15 |
|
fdm |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) = ℕ ) |
16 |
15
|
neeq1d |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ℕ ≠ ∅ ) ) |
17 |
14 16
|
mpbiri |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
18 |
|
dm0rn0 |
⊢ ( dom ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) = ∅ ) |
19 |
18
|
necon3bii |
⊢ ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
20 |
17 19
|
sylib |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
21 |
8 20
|
syl |
⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
22 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥 ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) |
24 |
23
|
rspcev |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
25 |
5 24
|
mpdan |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
26 |
|
id |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ ) |
27 |
|
suprleub |
⊢ ( ( ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) |
28 |
12 21 25 26 27
|
syl31anc |
⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) |
29 |
5 28
|
mpbird |
⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ) |
30 |
1 2 3 4
|
rpnnen1lem4 |
⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
31 |
|
resubcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ) |
32 |
30 31
|
mpdan |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ) |
34 |
|
posdif |
⊢ ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ↔ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
35 |
30 34
|
mpancom |
⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ↔ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
36 |
35
|
biimpa |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) |
37 |
36
|
gt0ne0d |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ≠ 0 ) |
38 |
33 37
|
rereccld |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ∈ ℝ ) |
39 |
|
arch |
⊢ ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ∈ ℝ → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) |
40 |
38 39
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) |
41 |
40
|
ex |
⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) ) |
42 |
1 2
|
rpnnen1lem2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℤ ) |
43 |
42
|
zred |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
44 |
43
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
45 |
44
|
ltp1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) |
46 |
33 36
|
jca |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) → ( ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ∧ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
47 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
48 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
49 |
47 48
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
50 |
|
ltrec1 |
⊢ ( ( ( ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ∈ ℝ ∧ 0 < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ↔ ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
51 |
46 49 50
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ↔ ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
52 |
30
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
53 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
54 |
53
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
55 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
56 |
52 54 55
|
ltaddsub2d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 ↔ ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) ) |
57 |
12
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
58 |
|
ffn |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( 𝐹 ‘ 𝑥 ) Fn ℕ ) |
59 |
8 58
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) Fn ℕ ) |
60 |
|
fnfvelrn |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ran ( 𝐹 ‘ 𝑥 ) ) |
61 |
59 60
|
sylan |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ran ( 𝐹 ‘ 𝑥 ) ) |
62 |
57 61
|
sseldd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℝ ) |
63 |
30
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
64 |
53
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
65 |
12 21 25
|
3jca |
⊢ ( 𝑥 ∈ ℝ → ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ) |
67 |
|
suprub |
⊢ ( ( ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ran ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) |
68 |
66 61 67
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) |
69 |
62 63 64 68
|
leadd1dd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ) |
70 |
62 64
|
readdcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ∈ ℝ ) |
71 |
|
readdcl |
⊢ ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ) |
72 |
30 53 71
|
syl2an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ) |
73 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
74 |
|
lelttr |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∧ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
75 |
74
|
expd |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) ) |
76 |
70 72 73 75
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ≤ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) ) |
77 |
69 76
|
mpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
78 |
77
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) + ( 1 / 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
79 |
56 78
|
sylbird |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
80 |
51 79
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
81 |
42
|
peano2zd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℤ ) |
82 |
|
oveq1 |
⊢ ( 𝑛 = ( sup ( 𝑇 , ℝ , < ) + 1 ) → ( 𝑛 / 𝑘 ) = ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) ) |
83 |
82
|
breq1d |
⊢ ( 𝑛 = ( sup ( 𝑇 , ℝ , < ) + 1 ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) ) |
84 |
83 1
|
elrab2 |
⊢ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ↔ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℤ ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) ) |
85 |
84
|
biimpri |
⊢ ( ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℤ ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) |
86 |
81 85
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) |
87 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ⊆ ℤ |
88 |
1 87
|
eqsstri |
⊢ 𝑇 ⊆ ℤ |
89 |
|
zssre |
⊢ ℤ ⊆ ℝ |
90 |
88 89
|
sstri |
⊢ 𝑇 ⊆ ℝ |
91 |
90
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ⊆ ℝ ) |
92 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
93 |
92
|
ancoms |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
94 |
47 93
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
95 |
|
btwnz |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ( ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑘 · 𝑥 ) < 𝑛 ) ) |
96 |
95
|
simpld |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
97 |
94 96
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
98 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
99 |
98
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
100 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑥 ∈ ℝ ) |
101 |
49
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
102 |
|
ltdivmul |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
103 |
99 100 101 102
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
104 |
103
|
rexbidva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ↔ ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
105 |
97 104
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
106 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
107 |
105 106
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
108 |
1
|
neeq1i |
⊢ ( 𝑇 ≠ ∅ ↔ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
109 |
107 108
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ≠ ∅ ) |
110 |
1
|
rabeq2i |
⊢ ( 𝑛 ∈ 𝑇 ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) |
111 |
47
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
112 |
111 100 92
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
113 |
|
ltle |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑘 · 𝑥 ) ∈ ℝ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
114 |
99 112 113
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
115 |
103 114
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
116 |
115
|
impr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
117 |
110 116
|
sylan2b |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝑇 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
118 |
117
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
119 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
120 |
119
|
ralbidv |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
121 |
120
|
rspcev |
⊢ ( ( ( 𝑘 · 𝑥 ) ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
122 |
94 118 121
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
123 |
91 109 122
|
3jca |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) ) |
124 |
|
suprub |
⊢ ( ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) ∧ ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) |
125 |
123 124
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ 𝑇 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) |
126 |
86 125
|
syldan |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) |
127 |
126
|
ex |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 → ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ) ) |
128 |
42
|
zcnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℂ ) |
129 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
130 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
131 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
132 |
130 131
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
133 |
132
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
134 |
|
divdir |
⊢ ( ( sup ( 𝑇 , ℝ , < ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) = ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) + ( 1 / 𝑘 ) ) ) |
135 |
128 129 133 134
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) = ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) + ( 1 / 𝑘 ) ) ) |
136 |
3
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V |
137 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
138 |
136 137
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
139 |
138
|
fveq1d |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) ) |
140 |
|
ovex |
⊢ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V |
141 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
142 |
141
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
143 |
140 142
|
mpan2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
144 |
139 143
|
sylan9eq |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
145 |
144
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) = ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) + ( 1 / 𝑘 ) ) ) |
146 |
135 145
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) = ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) ) |
147 |
146
|
breq1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( sup ( 𝑇 , ℝ , < ) + 1 ) / 𝑘 ) < 𝑥 ↔ ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 ) ) |
148 |
81
|
zred |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℝ ) |
149 |
148 43
|
lenltd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) + 1 ) ≤ sup ( 𝑇 , ℝ , < ) ↔ ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
150 |
127 147 149
|
3imtr3d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
151 |
150
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) + ( 1 / 𝑘 ) ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
152 |
80 151
|
syld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
153 |
152
|
exp31 |
⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ( 𝑘 ∈ ℕ → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
154 |
153
|
com4l |
⊢ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ( 𝑘 ∈ ℕ → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ( 𝑥 ∈ ℝ → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
155 |
154
|
com14 |
⊢ ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
156 |
155
|
3imp |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ¬ sup ( 𝑇 , ℝ , < ) < ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
157 |
45 156
|
mt2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 ) → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) |
158 |
157
|
rexlimdv3a |
⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑘 ∈ ℕ ( 1 / ( 𝑥 − sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ) ) < 𝑘 → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) |
159 |
41 158
|
syld |
⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) |
160 |
159
|
pm2.01d |
⊢ ( 𝑥 ∈ ℝ → ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) |
161 |
|
eqlelt |
⊢ ( ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ↔ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ∧ ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) ) |
162 |
30 161
|
mpancom |
⊢ ( 𝑥 ∈ ℝ → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ↔ ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ≤ 𝑥 ∧ ¬ sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) < 𝑥 ) ) ) |
163 |
29 160 162
|
mpbir2and |
⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ) |