Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
2 |
|
rpnnen1lem.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
3 |
|
rpnnen1lem.n |
⊢ ℕ ∈ V |
4 |
|
rpnnen1lem.q |
⊢ ℚ ∈ V |
5 |
|
ovex |
⊢ ( ℚ ↑m ℕ ) ∈ V |
6 |
1 2 3 4
|
rpnnen1lem1 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
7 |
|
rneq |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ran ( 𝐹 ‘ 𝑥 ) = ran ( 𝐹 ‘ 𝑦 ) ) |
8 |
7
|
supeq1d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) ) |
9 |
1 2 3 4
|
rpnnen1lem5 |
⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
11 |
10
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝐹 ‘ 𝑥 ) = ran ( 𝐹 ‘ 𝑦 ) ) |
12 |
11
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) ) |
13 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = 𝑥 ↔ sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) = 𝑦 ) ) |
15 |
14 9
|
vtoclga |
⊢ ( 𝑦 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) = 𝑦 ) |
16 |
9 15
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) = sup ( ran ( 𝐹 ‘ 𝑦 ) , ℝ , < ) ↔ 𝑥 = 𝑦 ) ) |
17 |
8 16
|
syl5ib |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
18 |
17 10
|
impbid1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
19 |
6 18
|
dom2 |
⊢ ( ( ℚ ↑m ℕ ) ∈ V → ℝ ≼ ( ℚ ↑m ℕ ) ) |
20 |
5 19
|
ax-mp |
⊢ ℝ ≼ ( ℚ ↑m ℕ ) |