Metamath Proof Explorer


Theorem rpnnen2lem1

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypothesis rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
Assertion rpnnen2lem1 ( ( 𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑁 ) = if ( 𝑁𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) )

Proof

Step Hyp Ref Expression
1 rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
2 nnex ℕ ∈ V
3 2 elpw2 ( 𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ )
4 eleq2 ( 𝑥 = 𝐴 → ( 𝑛𝑥𝑛𝐴 ) )
5 4 ifbid ( 𝑥 = 𝐴 → if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) )
6 5 mpteq2dv ( 𝑥 = 𝐴 → ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
7 2 mptex ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ∈ V
8 6 1 7 fvmpt ( 𝐴 ∈ 𝒫 ℕ → ( 𝐹𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
9 3 8 sylbir ( 𝐴 ⊆ ℕ → ( 𝐹𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
10 9 fveq1d ( 𝐴 ⊆ ℕ → ( ( 𝐹𝐴 ) ‘ 𝑁 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ‘ 𝑁 ) )
11 eleq1 ( 𝑛 = 𝑁 → ( 𝑛𝐴𝑁𝐴 ) )
12 oveq2 ( 𝑛 = 𝑁 → ( ( 1 / 3 ) ↑ 𝑛 ) = ( ( 1 / 3 ) ↑ 𝑁 ) )
13 11 12 ifbieq1d ( 𝑛 = 𝑁 → if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑁𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) )
14 eqid ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) )
15 ovex ( ( 1 / 3 ) ↑ 𝑁 ) ∈ V
16 c0ex 0 ∈ V
17 15 16 ifex if ( 𝑁𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ∈ V
18 13 14 17 fvmpt ( 𝑁 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ‘ 𝑁 ) = if ( 𝑁𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) )
19 10 18 sylan9eq ( ( 𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑁 ) = if ( 𝑁𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) )