Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
nnex |
⊢ ℕ ∈ V |
3 |
2
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ ) |
4 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴 ) ) |
5 |
4
|
ifbid |
⊢ ( 𝑥 = 𝐴 → if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
7 |
2
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ∈ V |
8 |
6 1 7
|
fvmpt |
⊢ ( 𝐴 ∈ 𝒫 ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
9 |
3 8
|
sylbir |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝐴 ⊆ ℕ → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑁 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ‘ 𝑁 ) ) |
11 |
|
eleq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 1 / 3 ) ↑ 𝑛 ) = ( ( 1 / 3 ) ↑ 𝑁 ) ) |
13 |
11 12
|
ifbieq1d |
⊢ ( 𝑛 = 𝑁 → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ) |
14 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) |
15 |
|
ovex |
⊢ ( ( 1 / 3 ) ↑ 𝑁 ) ∈ V |
16 |
|
c0ex |
⊢ 0 ∈ V |
17 |
15 16
|
ifex |
⊢ if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ∈ V |
18 |
13 14 17
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ‘ 𝑁 ) = if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ) |
19 |
10 18
|
sylan9eq |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑁 ) = if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ) |