| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 3 | 2 | elpw2 | ⊢ ( 𝐴  ∈  𝒫  ℕ  ↔  𝐴  ⊆  ℕ ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑛  ∈  𝑥  ↔  𝑛  ∈  𝐴 ) ) | 
						
							| 5 | 4 | ifbid | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 )  =  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) | 
						
							| 6 | 5 | mpteq2dv | ⊢ ( 𝑥  =  𝐴  →  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 7 | 2 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) )  ∈  V | 
						
							| 8 | 6 1 7 | fvmpt | ⊢ ( 𝐴  ∈  𝒫  ℕ  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 9 | 3 8 | sylbir | ⊢ ( 𝐴  ⊆  ℕ  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝐴  ⊆  ℕ  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑁 )  =  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ‘ 𝑁 ) ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ∈  𝐴  ↔  𝑁  ∈  𝐴 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( ( 1  /  3 ) ↑ 𝑛 )  =  ( ( 1  /  3 ) ↑ 𝑁 ) ) | 
						
							| 13 | 11 12 | ifbieq1d | ⊢ ( 𝑛  =  𝑁  →  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 )  =  if ( 𝑁  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑁 ) ,  0 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) | 
						
							| 15 |  | ovex | ⊢ ( ( 1  /  3 ) ↑ 𝑁 )  ∈  V | 
						
							| 16 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 17 | 15 16 | ifex | ⊢ if ( 𝑁  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑁 ) ,  0 )  ∈  V | 
						
							| 18 | 13 14 17 | fvmpt | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ‘ 𝑁 )  =  if ( 𝑁  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑁 ) ,  0 ) ) | 
						
							| 19 | 10 18 | sylan9eq | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑁 )  =  if ( 𝑁  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑁 ) ,  0 ) ) |