| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | rpnnen2.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ ) | 
						
							| 3 |  | rpnnen2.3 | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ ) | 
						
							| 4 |  | rpnnen2.4 | ⊢ ( 𝜑  →  𝑚  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 5 |  | rpnnen2.5 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝐴  ↔  𝑛  ∈  𝐵 ) ) ) | 
						
							| 6 |  | rpnnen2.6 | ⊢ ( 𝜓  ↔  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜓 ) | 
						
							| 8 | 7 6 | sylib | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 9 |  | eldifi | ⊢ ( 𝑚  ∈  ( 𝐴  ∖  𝐵 )  →  𝑚  ∈  𝐴 ) | 
						
							| 10 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑚  ∈  𝐴 )  →  𝑚  ∈  ℕ ) | 
						
							| 11 | 9 10 | sylan2 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑚  ∈  ( 𝐴  ∖  𝐵 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 12 | 2 4 11 | syl2anc | ⊢ ( 𝜑  →  𝑚  ∈  ℕ ) | 
						
							| 13 | 1 | rpnnen2lem8 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) | 
						
							| 14 | 2 12 13 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) | 
						
							| 15 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 16 |  | nnz | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℤ ) | 
						
							| 17 |  | elfzm11 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) )  ↔  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘  ∧  𝑘  <  𝑚 ) ) ) | 
						
							| 18 | 15 16 17 | sylancr | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) )  ↔  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘  ∧  𝑘  <  𝑚 ) ) ) | 
						
							| 19 | 18 | biimpa | ⊢ ( ( 𝑚  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘  ∧  𝑘  <  𝑚 ) ) | 
						
							| 20 | 12 19 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘  ∧  𝑘  <  𝑚 ) ) | 
						
							| 21 | 20 | simp3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  𝑘  <  𝑚 ) | 
						
							| 22 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  <  𝑚  ↔  𝑘  <  𝑚 ) ) | 
						
							| 24 |  | eleq1w | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ∈  𝐴  ↔  𝑘  ∈  𝐴 ) ) | 
						
							| 25 |  | eleq1w | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ∈  𝐵  ↔  𝑘  ∈  𝐵 ) ) | 
						
							| 26 | 24 25 | bibi12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑛  ∈  𝐴  ↔  𝑛  ∈  𝐵 )  ↔  ( 𝑘  ∈  𝐴  ↔  𝑘  ∈  𝐵 ) ) ) | 
						
							| 27 | 23 26 | imbi12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝐴  ↔  𝑛  ∈  𝐵 ) )  ↔  ( 𝑘  <  𝑚  →  ( 𝑘  ∈  𝐴  ↔  𝑘  ∈  𝐵 ) ) ) ) | 
						
							| 28 | 27 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝐴  ↔  𝑛  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  <  𝑚  →  ( 𝑘  ∈  𝐴  ↔  𝑘  ∈  𝐵 ) ) ) | 
						
							| 29 | 5 22 28 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘  <  𝑚  →  ( 𝑘  ∈  𝐴  ↔  𝑘  ∈  𝐵 ) ) ) | 
						
							| 30 | 21 29 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘  ∈  𝐴  ↔  𝑘  ∈  𝐵 ) ) | 
						
							| 31 | 30 | ifbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  if ( 𝑘  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 )  =  if ( 𝑘  ∈  𝐵 ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 32 | 1 | rpnnen2lem1 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 33 | 2 22 32 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 34 | 1 | rpnnen2lem1 | ⊢ ( ( 𝐵  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐵 ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 35 | 3 22 34 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐵 ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 36 | 31 33 35 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 37 | 36 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) | 
						
							| 39 | 14 38 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) | 
						
							| 41 | 1 | rpnnen2lem8 | ⊢ ( ( 𝐵  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 42 | 3 12 41 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 44 | 8 40 43 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 45 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 46 | 2 12 45 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 47 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐵  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 48 | 3 12 47 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 49 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( 𝑚  −  1 ) )  ∈  Fin ) | 
						
							| 50 | 1 | rpnnen2lem2 | ⊢ ( 𝐵  ⊆  ℕ  →  ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) | 
						
							| 51 | 3 50 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) | 
						
							| 52 |  | ffvelcdm | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 53 | 51 22 52 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 54 | 49 53 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 55 |  | readdcan | ⊢ ( ( Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ  ∧  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ  ∧  Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) )  ↔  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 56 | 46 48 54 55 | syl3anc | ⊢ ( 𝜑  →  ( ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) )  ↔  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) )  ↔  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 58 | 44 57 | mpbid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |