Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
rpnnen2.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
3 |
|
rpnnen2.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) |
4 |
|
rpnnen2.4 |
⊢ ( 𝜑 → 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) |
5 |
|
rpnnen2.5 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ) |
6 |
|
rpnnen2.6 |
⊢ ( 𝜓 ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) |
8 |
7 6
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
9 |
|
eldifi |
⊢ ( 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑚 ∈ 𝐴 ) |
10 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ ℕ ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑚 ∈ ℕ ) |
12 |
2 4 11
|
syl2anc |
⊢ ( 𝜑 → 𝑚 ∈ ℕ ) |
13 |
1
|
rpnnen2lem8 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
14 |
2 12 13
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
15 |
|
1z |
⊢ 1 ∈ ℤ |
16 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
17 |
|
elfzm11 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) ) |
18 |
15 16 17
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) ) |
19 |
18
|
biimpa |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) |
20 |
12 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) |
21 |
20
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → 𝑘 < 𝑚 ) |
22 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) → 𝑘 ∈ ℕ ) |
23 |
|
breq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 < 𝑚 ↔ 𝑘 < 𝑚 ) ) |
24 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) |
25 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵 ) ) |
26 |
24 25
|
bibi12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) |
27 |
23 26
|
imbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ↔ ( 𝑘 < 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) ) |
28 |
27
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 < 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) |
29 |
5 22 28
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 < 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) |
30 |
21 29
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) |
31 |
30
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
32 |
1
|
rpnnen2lem1 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
33 |
2 22 32
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
34 |
1
|
rpnnen2lem1 |
⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
35 |
3 22 34
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
36 |
31 33 35
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
37 |
36
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
39 |
14 38
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
41 |
1
|
rpnnen2lem8 |
⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
42 |
3 12 41
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
44 |
8 40 43
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
45 |
1
|
rpnnen2lem6 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
46 |
2 12 45
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
47 |
1
|
rpnnen2lem6 |
⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
48 |
3 12 47
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
49 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( 𝑚 − 1 ) ) ∈ Fin ) |
50 |
1
|
rpnnen2lem2 |
⊢ ( 𝐵 ⊆ ℕ → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
51 |
3 50
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
52 |
|
ffvelrn |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
53 |
51 22 52
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
54 |
49 53
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
55 |
|
readdcan |
⊢ ( ( Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ∧ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ∧ Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) → ( ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
56 |
46 48 54 55
|
syl3anc |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
58 |
44 57
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |