Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
rpnnen2.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
3 |
|
rpnnen2.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) |
4 |
|
rpnnen2.4 |
⊢ ( 𝜑 → 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) |
5 |
|
rpnnen2.5 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ) |
6 |
|
rpnnen2.6 |
⊢ ( 𝜓 ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
7 |
|
eldifi |
⊢ ( 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑚 ∈ 𝐴 ) |
8 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ ℕ ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑚 ∈ ℕ ) |
10 |
2 4 9
|
syl2anc |
⊢ ( 𝜑 → 𝑚 ∈ ℕ ) |
11 |
1
|
rpnnen2lem6 |
⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
12 |
3 10 11
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
13 |
|
3nn |
⊢ 3 ∈ ℕ |
14 |
|
nnrecre |
⊢ ( 3 ∈ ℕ → ( 1 / 3 ) ∈ ℝ ) |
15 |
13 14
|
ax-mp |
⊢ ( 1 / 3 ) ∈ ℝ |
16 |
10
|
nnnn0d |
⊢ ( 𝜑 → 𝑚 ∈ ℕ0 ) |
17 |
|
reexpcl |
⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ ) |
18 |
15 16 17
|
sylancr |
⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ ) |
19 |
1
|
rpnnen2lem6 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
20 |
2 10 19
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
21 |
|
nnrp |
⊢ ( 3 ∈ ℕ → 3 ∈ ℝ+ ) |
22 |
|
rpreccl |
⊢ ( 3 ∈ ℝ+ → ( 1 / 3 ) ∈ ℝ+ ) |
23 |
13 21 22
|
mp2b |
⊢ ( 1 / 3 ) ∈ ℝ+ |
24 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑚 ∈ ℤ ) |
25 |
|
rpexpcl |
⊢ ( ( ( 1 / 3 ) ∈ ℝ+ ∧ 𝑚 ∈ ℤ ) → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ+ ) |
26 |
23 24 25
|
sylancr |
⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ+ ) |
27 |
26
|
rpred |
⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ ) |
28 |
27
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ∈ ℝ ) |
29 |
4
|
snssd |
⊢ ( 𝜑 → { 𝑚 } ⊆ ( 𝐴 ∖ 𝐵 ) ) |
30 |
2
|
ssdifd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ ( ℕ ∖ 𝐵 ) ) |
31 |
29 30
|
sstrd |
⊢ ( 𝜑 → { 𝑚 } ⊆ ( ℕ ∖ 𝐵 ) ) |
32 |
10
|
snssd |
⊢ ( 𝜑 → { 𝑚 } ⊆ ℕ ) |
33 |
|
ssconb |
⊢ ( ( 𝐵 ⊆ ℕ ∧ { 𝑚 } ⊆ ℕ ) → ( 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ↔ { 𝑚 } ⊆ ( ℕ ∖ 𝐵 ) ) ) |
34 |
3 32 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ↔ { 𝑚 } ⊆ ( ℕ ∖ 𝐵 ) ) ) |
35 |
31 34
|
mpbird |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ) |
36 |
|
difssd |
⊢ ( 𝜑 → ( ℕ ∖ { 𝑚 } ) ⊆ ℕ ) |
37 |
1
|
rpnnen2lem7 |
⊢ ( ( 𝐵 ⊆ ( ℕ ∖ { 𝑚 } ) ∧ ( ℕ ∖ { 𝑚 } ) ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) ) |
38 |
35 36 10 37
|
syl3anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) ) |
39 |
1
|
rpnnen2lem9 |
⊢ ( 𝑚 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |
40 |
10 39
|
syl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |
41 |
15
|
recni |
⊢ ( 1 / 3 ) ∈ ℂ |
42 |
|
expp1 |
⊢ ( ( ( 1 / 3 ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
43 |
41 16 42
|
sylancr |
⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
44 |
27
|
recnd |
⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) |
45 |
|
3cn |
⊢ 3 ∈ ℂ |
46 |
|
3ne0 |
⊢ 3 ≠ 0 |
47 |
|
divrec |
⊢ ( ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
48 |
45 46 47
|
mp3an23 |
⊢ ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
49 |
44 48
|
syl |
⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) · ( 1 / 3 ) ) ) |
50 |
43 49
|
eqtr4d |
⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) ) |
51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 1 − ( 1 / 3 ) ) ) ) |
52 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
53 |
45 46
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
54 |
|
divsubdir |
⊢ ( ( 3 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) ) |
55 |
45 52 53 54
|
mp3an |
⊢ ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) |
56 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
57 |
56
|
oveq1i |
⊢ ( ( 3 − 1 ) / 3 ) = ( 2 / 3 ) |
58 |
45 46
|
dividi |
⊢ ( 3 / 3 ) = 1 |
59 |
58
|
oveq1i |
⊢ ( ( 3 / 3 ) − ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
60 |
55 57 59
|
3eqtr3ri |
⊢ ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) |
61 |
60
|
oveq2i |
⊢ ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) |
62 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
63 |
|
divcan7 |
⊢ ( ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
64 |
62 53 63
|
mp3an23 |
⊢ ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
65 |
44 64
|
syl |
⊢ ( 𝜑 → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
66 |
61 65
|
eqtrid |
⊢ ( 𝜑 → ( ( ( ( 1 / 3 ) ↑ 𝑚 ) / 3 ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
67 |
51 66
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
68 |
67
|
oveq2d |
⊢ ( 𝜑 → ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑚 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) = ( 0 + ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) ) |
69 |
28
|
recnd |
⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ∈ ℂ ) |
70 |
69
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
71 |
40 68 70
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑚 } ) ) ‘ 𝑘 ) = ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
72 |
38 71
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ≤ ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) ) |
73 |
|
rphalflt |
⊢ ( ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℝ+ → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) < ( ( 1 / 3 ) ↑ 𝑚 ) ) |
74 |
26 73
|
syl |
⊢ ( 𝜑 → ( ( ( 1 / 3 ) ↑ 𝑚 ) / 2 ) < ( ( 1 / 3 ) ↑ 𝑚 ) ) |
75 |
12 28 27 72 74
|
lelttrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) < ( ( 1 / 3 ) ↑ 𝑚 ) ) |
76 |
|
eluznn |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
77 |
10 76
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
78 |
1
|
rpnnen2lem1 |
⊢ ( ( { 𝑚 } ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
79 |
32 77 78
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
80 |
79
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
81 |
|
uzid |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
82 |
24 81
|
syl |
⊢ ( 𝜑 → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
83 |
82
|
snssd |
⊢ ( 𝜑 → { 𝑚 } ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
84 |
|
vex |
⊢ 𝑚 ∈ V |
85 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 1 / 3 ) ↑ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) |
86 |
85
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ↔ ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) ) |
87 |
84 86
|
ralsn |
⊢ ( ∀ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ↔ ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) |
88 |
44 87
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ) |
89 |
|
ssidd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
90 |
89
|
orcd |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑚 ) ∨ ( ℤ≥ ‘ 𝑚 ) ∈ Fin ) ) |
91 |
|
sumss2 |
⊢ ( ( ( { 𝑚 } ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∀ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℂ ) ∧ ( ( ℤ≥ ‘ 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑚 ) ∨ ( ℤ≥ ‘ 𝑚 ) ∈ Fin ) ) → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
92 |
83 88 90 91
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) if ( 𝑘 ∈ { 𝑚 } , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
93 |
85
|
sumsn |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( ( 1 / 3 ) ↑ 𝑚 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) |
94 |
10 44 93
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑚 } ( ( 1 / 3 ) ↑ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) |
95 |
80 92 94
|
3eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑚 ) ) |
96 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑚 ∈ 𝐴 ) |
97 |
96
|
snssd |
⊢ ( 𝜑 → { 𝑚 } ⊆ 𝐴 ) |
98 |
1
|
rpnnen2lem7 |
⊢ ( ( { 𝑚 } ⊆ 𝐴 ∧ 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
99 |
97 2 10 98
|
syl3anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
100 |
95 99
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 1 / 3 ) ↑ 𝑚 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
101 |
12 18 20 75 100
|
ltletrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) < Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
102 |
12 101
|
gtned |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≠ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
103 |
1 2 3 4 5 6
|
rpnnen2lem10 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
104 |
103
|
ex |
⊢ ( 𝜑 → ( 𝜓 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
105 |
104
|
necon3ad |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≠ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) → ¬ 𝜓 ) ) |
106 |
102 105
|
mpd |
⊢ ( 𝜑 → ¬ 𝜓 ) |