| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | rpnnen2.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ ) | 
						
							| 3 |  | rpnnen2.3 | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ ) | 
						
							| 4 |  | rpnnen2.4 | ⊢ ( 𝜑  →  𝑚  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 5 |  | rpnnen2.5 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝐴  ↔  𝑛  ∈  𝐵 ) ) ) | 
						
							| 6 |  | rpnnen2.6 | ⊢ ( 𝜓  ↔  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 7 |  | eldifi | ⊢ ( 𝑚  ∈  ( 𝐴  ∖  𝐵 )  →  𝑚  ∈  𝐴 ) | 
						
							| 8 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑚  ∈  𝐴 )  →  𝑚  ∈  ℕ ) | 
						
							| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑚  ∈  ( 𝐴  ∖  𝐵 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 10 | 2 4 9 | syl2anc | ⊢ ( 𝜑  →  𝑚  ∈  ℕ ) | 
						
							| 11 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐵  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 12 | 3 10 11 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 13 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 14 |  | nnrecre | ⊢ ( 3  ∈  ℕ  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 16 | 10 | nnnn0d | ⊢ ( 𝜑  →  𝑚  ∈  ℕ0 ) | 
						
							| 17 |  | reexpcl | ⊢ ( ( ( 1  /  3 )  ∈  ℝ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 18 | 15 16 17 | sylancr | ⊢ ( 𝜑  →  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 19 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 20 | 2 10 19 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 21 |  | nnrp | ⊢ ( 3  ∈  ℕ  →  3  ∈  ℝ+ ) | 
						
							| 22 |  | rpreccl | ⊢ ( 3  ∈  ℝ+  →  ( 1  /  3 )  ∈  ℝ+ ) | 
						
							| 23 | 13 21 22 | mp2b | ⊢ ( 1  /  3 )  ∈  ℝ+ | 
						
							| 24 | 10 | nnzd | ⊢ ( 𝜑  →  𝑚  ∈  ℤ ) | 
						
							| 25 |  | rpexpcl | ⊢ ( ( ( 1  /  3 )  ∈  ℝ+  ∧  𝑚  ∈  ℤ )  →  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℝ+ ) | 
						
							| 26 | 23 24 25 | sylancr | ⊢ ( 𝜑  →  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℝ+ ) | 
						
							| 27 | 26 | rpred | ⊢ ( 𝜑  →  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 28 | 27 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 )  ∈  ℝ ) | 
						
							| 29 | 4 | snssd | ⊢ ( 𝜑  →  { 𝑚 }  ⊆  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 30 | 2 | ssdifd | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐵 )  ⊆  ( ℕ  ∖  𝐵 ) ) | 
						
							| 31 | 29 30 | sstrd | ⊢ ( 𝜑  →  { 𝑚 }  ⊆  ( ℕ  ∖  𝐵 ) ) | 
						
							| 32 | 10 | snssd | ⊢ ( 𝜑  →  { 𝑚 }  ⊆  ℕ ) | 
						
							| 33 |  | ssconb | ⊢ ( ( 𝐵  ⊆  ℕ  ∧  { 𝑚 }  ⊆  ℕ )  →  ( 𝐵  ⊆  ( ℕ  ∖  { 𝑚 } )  ↔  { 𝑚 }  ⊆  ( ℕ  ∖  𝐵 ) ) ) | 
						
							| 34 | 3 32 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ⊆  ( ℕ  ∖  { 𝑚 } )  ↔  { 𝑚 }  ⊆  ( ℕ  ∖  𝐵 ) ) ) | 
						
							| 35 | 31 34 | mpbird | ⊢ ( 𝜑  →  𝐵  ⊆  ( ℕ  ∖  { 𝑚 } ) ) | 
						
							| 36 |  | difssd | ⊢ ( 𝜑  →  ( ℕ  ∖  { 𝑚 } )  ⊆  ℕ ) | 
						
							| 37 | 1 | rpnnen2lem7 | ⊢ ( ( 𝐵  ⊆  ( ℕ  ∖  { 𝑚 } )  ∧  ( ℕ  ∖  { 𝑚 } )  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑚 } ) ) ‘ 𝑘 ) ) | 
						
							| 38 | 35 36 10 37 | syl3anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑚 } ) ) ‘ 𝑘 ) ) | 
						
							| 39 | 1 | rpnnen2lem9 | ⊢ ( 𝑚  ∈  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑚 } ) ) ‘ 𝑘 )  =  ( 0  +  ( ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) ) ) ) | 
						
							| 40 | 10 39 | syl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑚 } ) ) ‘ 𝑘 )  =  ( 0  +  ( ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) ) ) ) | 
						
							| 41 | 15 | recni | ⊢ ( 1  /  3 )  ∈  ℂ | 
						
							| 42 |  | expp1 | ⊢ ( ( ( 1  /  3 )  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  ·  ( 1  /  3 ) ) ) | 
						
							| 43 | 41 16 42 | sylancr | ⊢ ( 𝜑  →  ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  ·  ( 1  /  3 ) ) ) | 
						
							| 44 | 27 | recnd | ⊢ ( 𝜑  →  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 45 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 46 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 47 |  | divrec | ⊢ ( ( ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ  ∧  3  ∈  ℂ  ∧  3  ≠  0 )  →  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  ·  ( 1  /  3 ) ) ) | 
						
							| 48 | 45 46 47 | mp3an23 | ⊢ ( ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ  →  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  ·  ( 1  /  3 ) ) ) | 
						
							| 49 | 44 48 | syl | ⊢ ( 𝜑  →  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  ·  ( 1  /  3 ) ) ) | 
						
							| 50 | 43 49 | eqtr4d | ⊢ ( 𝜑  →  ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) )  =  ( ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  /  ( 1  −  ( 1  /  3 ) ) ) ) | 
						
							| 52 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 53 | 45 46 | pm3.2i | ⊢ ( 3  ∈  ℂ  ∧  3  ≠  0 ) | 
						
							| 54 |  | divsubdir | ⊢ ( ( 3  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( ( 3  −  1 )  /  3 )  =  ( ( 3  /  3 )  −  ( 1  /  3 ) ) ) | 
						
							| 55 | 45 52 53 54 | mp3an | ⊢ ( ( 3  −  1 )  /  3 )  =  ( ( 3  /  3 )  −  ( 1  /  3 ) ) | 
						
							| 56 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 57 | 56 | oveq1i | ⊢ ( ( 3  −  1 )  /  3 )  =  ( 2  /  3 ) | 
						
							| 58 | 45 46 | dividi | ⊢ ( 3  /  3 )  =  1 | 
						
							| 59 | 58 | oveq1i | ⊢ ( ( 3  /  3 )  −  ( 1  /  3 ) )  =  ( 1  −  ( 1  /  3 ) ) | 
						
							| 60 | 55 57 59 | 3eqtr3ri | ⊢ ( 1  −  ( 1  /  3 ) )  =  ( 2  /  3 ) | 
						
							| 61 | 60 | oveq2i | ⊢ ( ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  /  ( 1  −  ( 1  /  3 ) ) )  =  ( ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  /  ( 2  /  3 ) ) | 
						
							| 62 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 63 |  | divcan7 | ⊢ ( ( ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  /  ( 2  /  3 ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 64 | 62 53 63 | mp3an23 | ⊢ ( ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ  →  ( ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  /  ( 2  /  3 ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 65 | 44 64 | syl | ⊢ ( 𝜑  →  ( ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  /  ( 2  /  3 ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 66 | 61 65 | eqtrid | ⊢ ( 𝜑  →  ( ( ( ( 1  /  3 ) ↑ 𝑚 )  /  3 )  /  ( 1  −  ( 1  /  3 ) ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 67 | 51 66 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( 𝜑  →  ( 0  +  ( ( ( 1  /  3 ) ↑ ( 𝑚  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) ) )  =  ( 0  +  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) ) | 
						
							| 69 | 28 | recnd | ⊢ ( 𝜑  →  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 )  ∈  ℂ ) | 
						
							| 70 | 69 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 71 | 40 68 70 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑚 } ) ) ‘ 𝑘 )  =  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 72 | 38 71 | breqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ≤  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 ) ) | 
						
							| 73 |  | rphalflt | ⊢ ( ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℝ+  →  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 )  <  ( ( 1  /  3 ) ↑ 𝑚 ) ) | 
						
							| 74 | 26 73 | syl | ⊢ ( 𝜑  →  ( ( ( 1  /  3 ) ↑ 𝑚 )  /  2 )  <  ( ( 1  /  3 ) ↑ 𝑚 ) ) | 
						
							| 75 | 12 28 27 72 74 | lelttrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  <  ( ( 1  /  3 ) ↑ 𝑚 ) ) | 
						
							| 76 |  | eluznn | ⊢ ( ( 𝑚  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 77 | 10 76 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 78 | 1 | rpnnen2lem1 | ⊢ ( ( { 𝑚 }  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 )  =  if ( 𝑘  ∈  { 𝑚 } ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 79 | 32 77 78 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) )  →  ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 )  =  if ( 𝑘  ∈  { 𝑚 } ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 80 | 79 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) if ( 𝑘  ∈  { 𝑚 } ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 81 |  | uzid | ⊢ ( 𝑚  ∈  ℤ  →  𝑚  ∈  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 82 | 24 81 | syl | ⊢ ( 𝜑  →  𝑚  ∈  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 83 | 82 | snssd | ⊢ ( 𝜑  →  { 𝑚 }  ⊆  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 84 |  | vex | ⊢ 𝑚  ∈  V | 
						
							| 85 |  | oveq2 | ⊢ ( 𝑘  =  𝑚  →  ( ( 1  /  3 ) ↑ 𝑘 )  =  ( ( 1  /  3 ) ↑ 𝑚 ) ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( 1  /  3 ) ↑ 𝑘 )  ∈  ℂ  ↔  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ ) ) | 
						
							| 87 | 84 86 | ralsn | ⊢ ( ∀ 𝑘  ∈  { 𝑚 } ( ( 1  /  3 ) ↑ 𝑘 )  ∈  ℂ  ↔  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 88 | 44 87 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  { 𝑚 } ( ( 1  /  3 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 89 |  | ssidd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑚 )  ⊆  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 90 | 89 | orcd | ⊢ ( 𝜑  →  ( ( ℤ≥ ‘ 𝑚 )  ⊆  ( ℤ≥ ‘ 𝑚 )  ∨  ( ℤ≥ ‘ 𝑚 )  ∈  Fin ) ) | 
						
							| 91 |  | sumss2 | ⊢ ( ( ( { 𝑚 }  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∀ 𝑘  ∈  { 𝑚 } ( ( 1  /  3 ) ↑ 𝑘 )  ∈  ℂ )  ∧  ( ( ℤ≥ ‘ 𝑚 )  ⊆  ( ℤ≥ ‘ 𝑚 )  ∨  ( ℤ≥ ‘ 𝑚 )  ∈  Fin ) )  →  Σ 𝑘  ∈  { 𝑚 } ( ( 1  /  3 ) ↑ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) if ( 𝑘  ∈  { 𝑚 } ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 92 | 83 88 90 91 | syl21anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑚 } ( ( 1  /  3 ) ↑ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) if ( 𝑘  ∈  { 𝑚 } ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 93 | 85 | sumsn | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( ( 1  /  3 ) ↑ 𝑚 )  ∈  ℂ )  →  Σ 𝑘  ∈  { 𝑚 } ( ( 1  /  3 ) ↑ 𝑘 )  =  ( ( 1  /  3 ) ↑ 𝑚 ) ) | 
						
							| 94 | 10 44 93 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑚 } ( ( 1  /  3 ) ↑ 𝑘 )  =  ( ( 1  /  3 ) ↑ 𝑚 ) ) | 
						
							| 95 | 80 92 94 | 3eqtr2d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 )  =  ( ( 1  /  3 ) ↑ 𝑚 ) ) | 
						
							| 96 | 4 7 | syl | ⊢ ( 𝜑  →  𝑚  ∈  𝐴 ) | 
						
							| 97 | 96 | snssd | ⊢ ( 𝜑  →  { 𝑚 }  ⊆  𝐴 ) | 
						
							| 98 | 1 | rpnnen2lem7 | ⊢ ( ( { 𝑚 }  ⊆  𝐴  ∧  𝐴  ⊆  ℕ  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | 
						
							| 99 | 97 2 10 98 | syl3anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ { 𝑚 } ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | 
						
							| 100 | 95 99 | eqbrtrrd | ⊢ ( 𝜑  →  ( ( 1  /  3 ) ↑ 𝑚 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | 
						
							| 101 | 12 18 20 75 100 | ltletrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  <  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | 
						
							| 102 | 12 101 | gtned | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≠  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 103 | 1 2 3 4 5 6 | rpnnen2lem10 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 104 | 103 | ex | ⊢ ( 𝜑  →  ( 𝜓  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 105 | 104 | necon3ad | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≠  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  →  ¬  𝜓 ) ) | 
						
							| 106 | 102 105 | mpd | ⊢ ( 𝜑  →  ¬  𝜓 ) |