Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
3 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ ) |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
4
|
sumeq1i |
⊢ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) |
6 |
|
1nn |
⊢ 1 ∈ ℕ |
7 |
1
|
rpnnen2lem6 |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 1 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
9 |
5 8
|
eqeltrid |
⊢ ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
10 |
3 9
|
syl |
⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
11 |
|
1zzd |
⊢ ( 𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ ) |
12 |
|
eqidd |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
13 |
1
|
rpnnen2lem2 |
⊢ ( 𝑦 ⊆ ℕ → ( 𝐹 ‘ 𝑦 ) : ℕ ⟶ ℝ ) |
14 |
3 13
|
syl |
⊢ ( 𝑦 ∈ 𝒫 ℕ → ( 𝐹 ‘ 𝑦 ) : ℕ ⟶ ℝ ) |
15 |
14
|
ffvelrnda |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ) |
16 |
1
|
rpnnen2lem5 |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 1 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝑦 ) ) ∈ dom ⇝ ) |
17 |
3 6 16
|
sylancl |
⊢ ( 𝑦 ∈ 𝒫 ℕ → seq 1 ( + , ( 𝐹 ‘ 𝑦 ) ) ∈ dom ⇝ ) |
18 |
|
ssid |
⊢ ℕ ⊆ ℕ |
19 |
1
|
rpnnen2lem4 |
⊢ ( ( 𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
20 |
18 19
|
mp3an2 |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
21 |
20
|
simpld |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
22 |
3 21
|
sylan |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
23 |
4 11 12 15 17 22
|
isumge0 |
⊢ ( 𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
24 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
25 |
24
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 ℕ → ( 1 / 2 ) ∈ ℝ ) |
26 |
|
1re |
⊢ 1 ∈ ℝ |
27 |
26
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ ) |
28 |
1
|
rpnnen2lem7 |
⊢ ( ( 𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
29 |
18 6 28
|
mp3an23 |
⊢ ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
30 |
3 29
|
syl |
⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
31 |
|
eqid |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ 1 ) |
32 |
|
eqidd |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
33 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
34 |
1
|
rpnnen2lem2 |
⊢ ( ℕ ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) |
35 |
18 34
|
ax-mp |
⊢ ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ |
36 |
35
|
ffvelrni |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℝ ) |
37 |
36
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ ) |
38 |
33 37
|
sylbir |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ ) |
39 |
38
|
adantl |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ ) |
40 |
1
|
rpnnen2lem3 |
⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) |
41 |
40
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 ℕ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) ) |
42 |
31 11 32 39 41
|
isumclim |
⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( 1 / 2 ) ) |
43 |
30 42
|
breqtrd |
⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( 1 / 2 ) ) |
44 |
5 43
|
eqbrtrid |
⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ ( 1 / 2 ) ) |
45 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
46 |
24 26 45
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
47 |
46
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 ℕ → ( 1 / 2 ) ≤ 1 ) |
48 |
10 25 27 44 47
|
letrd |
⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ 1 ) |
49 |
|
elicc01 |
⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ≤ 1 ) ) |
50 |
10 23 48 49
|
syl3anbrc |
⊢ ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ∈ ( 0 [,] 1 ) ) |
51 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ ) |
52 |
|
ssdifss |
⊢ ( 𝑦 ⊆ ℕ → ( 𝑦 ∖ 𝑧 ) ⊆ ℕ ) |
53 |
|
ssdifss |
⊢ ( 𝑧 ⊆ ℕ → ( 𝑧 ∖ 𝑦 ) ⊆ ℕ ) |
54 |
|
unss |
⊢ ( ( ( 𝑦 ∖ 𝑧 ) ⊆ ℕ ∧ ( 𝑧 ∖ 𝑦 ) ⊆ ℕ ) ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) |
55 |
54
|
biimpi |
⊢ ( ( ( 𝑦 ∖ 𝑧 ) ⊆ ℕ ∧ ( 𝑧 ∖ 𝑦 ) ⊆ ℕ ) → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) |
56 |
52 53 55
|
syl2an |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) |
57 |
3 51 56
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ) |
58 |
|
eqss |
⊢ ( 𝑦 = 𝑧 ↔ ( 𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
59 |
|
ssdif0 |
⊢ ( 𝑦 ⊆ 𝑧 ↔ ( 𝑦 ∖ 𝑧 ) = ∅ ) |
60 |
|
ssdif0 |
⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑧 ∖ 𝑦 ) = ∅ ) |
61 |
59 60
|
anbi12i |
⊢ ( ( 𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ( ( 𝑦 ∖ 𝑧 ) = ∅ ∧ ( 𝑧 ∖ 𝑦 ) = ∅ ) ) |
62 |
|
un00 |
⊢ ( ( ( 𝑦 ∖ 𝑧 ) = ∅ ∧ ( 𝑧 ∖ 𝑦 ) = ∅ ) ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) = ∅ ) |
63 |
58 61 62
|
3bitri |
⊢ ( 𝑦 = 𝑧 ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) = ∅ ) |
64 |
63
|
necon3bii |
⊢ ( 𝑦 ≠ 𝑧 ↔ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ≠ ∅ ) |
65 |
64
|
biimpi |
⊢ ( 𝑦 ≠ 𝑧 → ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ≠ ∅ ) |
66 |
|
nnwo |
⊢ ( ( ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ⊆ ℕ ∧ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ≠ ∅ ) → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ) |
67 |
57 65 66
|
syl2an |
⊢ ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑦 ≠ 𝑧 ) → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ) |
68 |
67
|
ex |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ) ) |
69 |
57
|
sselda |
⊢ ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) → 𝑚 ∈ ℕ ) |
70 |
|
df-ral |
⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ↔ ∀ 𝑛 ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ) |
71 |
|
con34b |
⊢ ( ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ¬ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) ) |
72 |
|
eldif |
⊢ ( 𝑛 ∈ ( 𝑦 ∖ 𝑧 ) ↔ ( 𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧 ) ) |
73 |
|
eldif |
⊢ ( 𝑛 ∈ ( 𝑧 ∖ 𝑦 ) ↔ ( 𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦 ) ) |
74 |
72 73
|
orbi12i |
⊢ ( ( 𝑛 ∈ ( 𝑦 ∖ 𝑧 ) ∨ 𝑛 ∈ ( 𝑧 ∖ 𝑦 ) ) ↔ ( ( 𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧 ) ∨ ( 𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦 ) ) ) |
75 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ↔ ( 𝑛 ∈ ( 𝑦 ∖ 𝑧 ) ∨ 𝑛 ∈ ( 𝑧 ∖ 𝑦 ) ) ) |
76 |
|
xor |
⊢ ( ¬ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ↔ ( ( 𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧 ) ∨ ( 𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦 ) ) ) |
77 |
74 75 76
|
3bitr4ri |
⊢ ( ¬ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ↔ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) |
78 |
77
|
con1bii |
⊢ ( ¬ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ↔ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) |
79 |
78
|
imbi2i |
⊢ ( ( ¬ 𝑚 ≤ 𝑛 → ¬ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
80 |
71 79
|
bitri |
⊢ ( ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
81 |
80
|
albii |
⊢ ( ∀ 𝑛 ( 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) → 𝑚 ≤ 𝑛 ) ↔ ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
82 |
70 81
|
bitri |
⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 ↔ ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
83 |
|
alral |
⊢ ( ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ∀ 𝑛 ∈ ℕ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
84 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
85 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
86 |
|
ltnle |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛 ) ) |
87 |
84 85 86
|
syl2anr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛 ) ) |
88 |
87
|
imbi1d |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ↔ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
89 |
88
|
ralbidva |
⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
90 |
83 89
|
syl5ibr |
⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ( ¬ 𝑚 ≤ 𝑛 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
91 |
82 90
|
syl5bi |
⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
92 |
69 91
|
syl |
⊢ ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
93 |
92
|
reximdva |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) 𝑚 ≤ 𝑛 → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
94 |
68 93
|
syld |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
95 |
|
rexun |
⊢ ( ∃ 𝑚 ∈ ( ( 𝑦 ∖ 𝑧 ) ∪ ( 𝑧 ∖ 𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) |
96 |
94 95
|
syl6ib |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) ) |
97 |
|
simpll |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑦 ⊆ ℕ ) |
98 |
|
simplr |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑧 ⊆ ℕ ) |
99 |
|
simprl |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ) |
100 |
|
simprr |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
101 |
|
biid |
⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
102 |
1 97 98 99 100 101
|
rpnnen2lem11 |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
103 |
102
|
rexlimdvaa |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
104 |
|
simplr |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑧 ⊆ ℕ ) |
105 |
|
simpll |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑦 ⊆ ℕ ) |
106 |
|
simprl |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ) |
107 |
|
simprr |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
108 |
|
bicom |
⊢ ( ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ↔ ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) |
109 |
108
|
imbi2i |
⊢ ( ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ) ↔ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
110 |
109
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) |
111 |
107 110
|
sylibr |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦 ) ) ) |
112 |
|
eqcom |
⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) |
113 |
1 104 105 106 111 112
|
rpnnen2lem11 |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
114 |
113
|
rexlimdvaa |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
115 |
103 114
|
jaod |
⊢ ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
116 |
3 51 115
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ( ∃ 𝑚 ∈ ( 𝑦 ∖ 𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧 ∖ 𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧 ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
117 |
96 116
|
syld |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦 ≠ 𝑧 → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
118 |
117
|
necon4ad |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) → 𝑦 = 𝑧 ) ) |
119 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
120 |
119
|
fveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
121 |
120
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑧 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
122 |
118 121
|
impbid1 |
⊢ ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ↔ 𝑦 = 𝑧 ) ) |
123 |
50 122
|
dom2 |
⊢ ( ( 0 [,] 1 ) ∈ V → 𝒫 ℕ ≼ ( 0 [,] 1 ) ) |
124 |
2 123
|
ax-mp |
⊢ 𝒫 ℕ ≼ ( 0 [,] 1 ) |