Metamath Proof Explorer


Theorem rpnnen2lem12

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypothesis rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
Assertion rpnnen2lem12 𝒫 ℕ ≼ ( 0 [,] 1 )

Proof

Step Hyp Ref Expression
1 rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
2 ovex ( 0 [,] 1 ) ∈ V
3 elpwi ( 𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ )
4 nnuz ℕ = ( ℤ ‘ 1 )
5 4 sumeq1i Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹𝑦 ) ‘ 𝑘 )
6 1nn 1 ∈ ℕ
7 1 rpnnen2lem6 ( ( 𝑦 ⊆ ℕ ∧ 1 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ℝ )
8 6 7 mpan2 ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ℝ )
9 5 8 eqeltrid ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ℝ )
10 3 9 syl ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ℝ )
11 1zzd ( 𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ )
12 eqidd ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝑦 ) ‘ 𝑘 ) = ( ( 𝐹𝑦 ) ‘ 𝑘 ) )
13 1 rpnnen2lem2 ( 𝑦 ⊆ ℕ → ( 𝐹𝑦 ) : ℕ ⟶ ℝ )
14 3 13 syl ( 𝑦 ∈ 𝒫 ℕ → ( 𝐹𝑦 ) : ℕ ⟶ ℝ )
15 14 ffvelrnda ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ℝ )
16 1 rpnnen2lem5 ( ( 𝑦 ⊆ ℕ ∧ 1 ∈ ℕ ) → seq 1 ( + , ( 𝐹𝑦 ) ) ∈ dom ⇝ )
17 3 6 16 sylancl ( 𝑦 ∈ 𝒫 ℕ → seq 1 ( + , ( 𝐹𝑦 ) ) ∈ dom ⇝ )
18 ssid ℕ ⊆ ℕ
19 1 rpnnen2lem4 ( ( 𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∧ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) )
20 18 19 mp3an2 ( ( 𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∧ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) )
21 20 simpld ( ( 𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹𝑦 ) ‘ 𝑘 ) )
22 3 21 sylan ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹𝑦 ) ‘ 𝑘 ) )
23 4 11 12 15 17 22 isumge0 ( 𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) )
24 halfre ( 1 / 2 ) ∈ ℝ
25 24 a1i ( 𝑦 ∈ 𝒫 ℕ → ( 1 / 2 ) ∈ ℝ )
26 1re 1 ∈ ℝ
27 26 a1i ( 𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ )
28 1 rpnnen2lem7 ( ( 𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) )
29 18 6 28 mp3an23 ( 𝑦 ⊆ ℕ → Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) )
30 3 29 syl ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) )
31 eqid ( ℤ ‘ 1 ) = ( ℤ ‘ 1 )
32 eqidd ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ( ℤ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) )
33 elnnuz ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ ‘ 1 ) )
34 1 rpnnen2lem2 ( ℕ ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ )
35 18 34 ax-mp ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ
36 35 ffvelrni ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℝ )
37 36 recnd ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ )
38 33 37 sylbir ( 𝑘 ∈ ( ℤ ‘ 1 ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ )
39 38 adantl ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ( ℤ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℂ )
40 1 rpnnen2lem3 seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 )
41 40 a1i ( 𝑦 ∈ 𝒫 ℕ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) )
42 31 11 32 39 41 isumclim ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( 1 / 2 ) )
43 30 42 breqtrd ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ( ℤ ‘ 1 ) ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ ( 1 / 2 ) )
44 5 43 eqbrtrid ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ ( 1 / 2 ) )
45 halflt1 ( 1 / 2 ) < 1
46 24 26 45 ltleii ( 1 / 2 ) ≤ 1
47 46 a1i ( 𝑦 ∈ 𝒫 ℕ → ( 1 / 2 ) ≤ 1 )
48 10 25 27 44 47 letrd ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ 1 )
49 elicc01 ( Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ( 0 [,] 1 ) ↔ ( Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ≤ 1 ) )
50 10 23 48 49 syl3anbrc ( 𝑦 ∈ 𝒫 ℕ → Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) ∈ ( 0 [,] 1 ) )
51 elpwi ( 𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ )
52 ssdifss ( 𝑦 ⊆ ℕ → ( 𝑦𝑧 ) ⊆ ℕ )
53 ssdifss ( 𝑧 ⊆ ℕ → ( 𝑧𝑦 ) ⊆ ℕ )
54 unss ( ( ( 𝑦𝑧 ) ⊆ ℕ ∧ ( 𝑧𝑦 ) ⊆ ℕ ) ↔ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ⊆ ℕ )
55 54 biimpi ( ( ( 𝑦𝑧 ) ⊆ ℕ ∧ ( 𝑧𝑦 ) ⊆ ℕ ) → ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ⊆ ℕ )
56 52 53 55 syl2an ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ⊆ ℕ )
57 3 51 56 syl2an ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ⊆ ℕ )
58 eqss ( 𝑦 = 𝑧 ↔ ( 𝑦𝑧𝑧𝑦 ) )
59 ssdif0 ( 𝑦𝑧 ↔ ( 𝑦𝑧 ) = ∅ )
60 ssdif0 ( 𝑧𝑦 ↔ ( 𝑧𝑦 ) = ∅ )
61 59 60 anbi12i ( ( 𝑦𝑧𝑧𝑦 ) ↔ ( ( 𝑦𝑧 ) = ∅ ∧ ( 𝑧𝑦 ) = ∅ ) )
62 un00 ( ( ( 𝑦𝑧 ) = ∅ ∧ ( 𝑧𝑦 ) = ∅ ) ↔ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) = ∅ )
63 58 61 62 3bitri ( 𝑦 = 𝑧 ↔ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) = ∅ )
64 63 necon3bii ( 𝑦𝑧 ↔ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ≠ ∅ )
65 64 biimpi ( 𝑦𝑧 → ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ≠ ∅ )
66 nnwo ( ( ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ⊆ ℕ ∧ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ≠ ∅ ) → ∃ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 )
67 57 65 66 syl2an ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑦𝑧 ) → ∃ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 )
68 67 ex ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦𝑧 → ∃ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 ) )
69 57 sselda ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ) → 𝑚 ∈ ℕ )
70 df-ral ( ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 ↔ ∀ 𝑛 ( 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) → 𝑚𝑛 ) )
71 con34b ( ( 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) → 𝑚𝑛 ) ↔ ( ¬ 𝑚𝑛 → ¬ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ) )
72 eldif ( 𝑛 ∈ ( 𝑦𝑧 ) ↔ ( 𝑛𝑦 ∧ ¬ 𝑛𝑧 ) )
73 eldif ( 𝑛 ∈ ( 𝑧𝑦 ) ↔ ( 𝑛𝑧 ∧ ¬ 𝑛𝑦 ) )
74 72 73 orbi12i ( ( 𝑛 ∈ ( 𝑦𝑧 ) ∨ 𝑛 ∈ ( 𝑧𝑦 ) ) ↔ ( ( 𝑛𝑦 ∧ ¬ 𝑛𝑧 ) ∨ ( 𝑛𝑧 ∧ ¬ 𝑛𝑦 ) ) )
75 elun ( 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ↔ ( 𝑛 ∈ ( 𝑦𝑧 ) ∨ 𝑛 ∈ ( 𝑧𝑦 ) ) )
76 xor ( ¬ ( 𝑛𝑦𝑛𝑧 ) ↔ ( ( 𝑛𝑦 ∧ ¬ 𝑛𝑧 ) ∨ ( 𝑛𝑧 ∧ ¬ 𝑛𝑦 ) ) )
77 74 75 76 3bitr4ri ( ¬ ( 𝑛𝑦𝑛𝑧 ) ↔ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) )
78 77 con1bii ( ¬ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ↔ ( 𝑛𝑦𝑛𝑧 ) )
79 78 imbi2i ( ( ¬ 𝑚𝑛 → ¬ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ) ↔ ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) )
80 71 79 bitri ( ( 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) → 𝑚𝑛 ) ↔ ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) )
81 80 albii ( ∀ 𝑛 ( 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) → 𝑚𝑛 ) ↔ ∀ 𝑛 ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) )
82 70 81 bitri ( ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 ↔ ∀ 𝑛 ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) )
83 alral ( ∀ 𝑛 ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) → ∀ 𝑛 ∈ ℕ ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) )
84 nnre ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ )
85 nnre ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ )
86 ltnle ( ( 𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑚𝑛 ) )
87 84 85 86 syl2anr ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑚𝑛 ) )
88 87 imbi1d ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ↔ ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
89 88 ralbidva ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
90 83 89 syl5ibr ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ( ¬ 𝑚𝑛 → ( 𝑛𝑦𝑛𝑧 ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
91 82 90 syl5bi ( 𝑚 ∈ ℕ → ( ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
92 69 91 syl ( ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) ∧ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ) → ( ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
93 92 reximdva ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ∃ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ∀ 𝑛 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) 𝑚𝑛 → ∃ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
94 68 93 syld ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦𝑧 → ∃ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
95 rexun ( ∃ 𝑚 ∈ ( ( 𝑦𝑧 ) ∪ ( 𝑧𝑦 ) ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ( 𝑦𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) )
96 94 95 syl6ib ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦𝑧 → ( ∃ 𝑚 ∈ ( 𝑦𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) )
97 simpll ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → 𝑦 ⊆ ℕ )
98 simplr ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → 𝑧 ⊆ ℕ )
99 simprl ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → 𝑚 ∈ ( 𝑦𝑧 ) )
100 simprr ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) )
101 biid ( Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) )
102 1 97 98 99 100 101 rpnnen2lem11 ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑦𝑧 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) )
103 102 rexlimdvaa ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ∃ 𝑚 ∈ ( 𝑦𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ) )
104 simplr ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → 𝑧 ⊆ ℕ )
105 simpll ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → 𝑦 ⊆ ℕ )
106 simprl ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → 𝑚 ∈ ( 𝑧𝑦 ) )
107 simprr ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) )
108 bicom ( ( 𝑛𝑧𝑛𝑦 ) ↔ ( 𝑛𝑦𝑛𝑧 ) )
109 108 imbi2i ( ( 𝑛 < 𝑚 → ( 𝑛𝑧𝑛𝑦 ) ) ↔ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) )
110 109 ralbii ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑧𝑛𝑦 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) )
111 107 110 sylibr ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑧𝑛𝑦 ) ) )
112 eqcom ( Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) )
113 1 104 105 106 111 112 rpnnen2lem11 ( ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) ∧ ( 𝑚 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) )
114 113 rexlimdvaa ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ∃ 𝑚 ∈ ( 𝑧𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ) )
115 103 114 jaod ( ( 𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ ) → ( ( ∃ 𝑚 ∈ ( 𝑦𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ) )
116 3 51 115 syl2an ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( ( ∃ 𝑚 ∈ ( 𝑦𝑧 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ∨ ∃ 𝑚 ∈ ( 𝑧𝑦 ) ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛𝑦𝑛𝑧 ) ) ) → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ) )
117 96 116 syld ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( 𝑦𝑧 → ¬ Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ) )
118 117 necon4ad ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) → 𝑦 = 𝑧 ) )
119 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
120 119 fveq1d ( 𝑦 = 𝑧 → ( ( 𝐹𝑦 ) ‘ 𝑘 ) = ( ( 𝐹𝑧 ) ‘ 𝑘 ) )
121 120 sumeq2sdv ( 𝑦 = 𝑧 → Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) )
122 118 121 impbid1 ( ( 𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ ) → ( Σ 𝑘 ∈ ℕ ( ( 𝐹𝑦 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹𝑧 ) ‘ 𝑘 ) ↔ 𝑦 = 𝑧 ) )
123 50 122 dom2 ( ( 0 [,] 1 ) ∈ V → 𝒫 ℕ ≼ ( 0 [,] 1 ) )
124 2 123 ax-mp 𝒫 ℕ ≼ ( 0 [,] 1 )