| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | ovex | ⊢ ( 0 [,] 1 )  ∈  V | 
						
							| 3 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  𝑦  ⊆  ℕ ) | 
						
							| 4 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 5 | 4 | sumeq1i | ⊢ Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) | 
						
							| 6 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 7 | 1 | rpnnen2lem6 | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  1  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝑦  ⊆  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 9 | 5 8 | eqeltrid | ⊢ ( 𝑦  ⊆  ℕ  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 11 |  | 1zzd | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  1  ∈  ℤ ) | 
						
							| 12 |  | eqidd | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) | 
						
							| 13 | 1 | rpnnen2lem2 | ⊢ ( 𝑦  ⊆  ℕ  →  ( 𝐹 ‘ 𝑦 ) : ℕ ⟶ ℝ ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  ( 𝐹 ‘ 𝑦 ) : ℕ ⟶ ℝ ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 16 | 1 | rpnnen2lem5 | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  1  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝐹 ‘ 𝑦 ) )  ∈  dom   ⇝  ) | 
						
							| 17 | 3 6 16 | sylancl | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  seq 1 (  +  ,  ( 𝐹 ‘ 𝑦 ) )  ∈  dom   ⇝  ) | 
						
							| 18 |  | ssid | ⊢ ℕ  ⊆  ℕ | 
						
							| 19 | 1 | rpnnen2lem4 | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  ℕ  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) | 
						
							| 20 | 18 19 | mp3an2 | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) | 
						
							| 22 | 3 21 | sylan | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) | 
						
							| 23 | 4 11 12 15 17 22 | isumge0 | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  0  ≤  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) | 
						
							| 24 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 26 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  1  ∈  ℝ ) | 
						
							| 28 | 1 | rpnnen2lem7 | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  ℕ  ⊆  ℕ  ∧  1  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) | 
						
							| 29 | 18 6 28 | mp3an23 | ⊢ ( 𝑦  ⊆  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) | 
						
							| 30 | 3 29 | syl | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) | 
						
							| 31 |  | eqid | ⊢ ( ℤ≥ ‘ 1 )  =  ( ℤ≥ ‘ 1 ) | 
						
							| 32 |  | eqidd | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) | 
						
							| 33 |  | elnnuz | ⊢ ( 𝑘  ∈  ℕ  ↔  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 34 | 1 | rpnnen2lem2 | ⊢ ( ℕ  ⊆  ℕ  →  ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) | 
						
							| 35 | 18 34 | ax-mp | ⊢ ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ | 
						
							| 36 | 35 | ffvelcdmi | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 37 | 36 | recnd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 38 | 33 37 | sylbir | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 40 | 1 | rpnnen2lem3 | ⊢ seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ⇝  ( 1  /  2 ) | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ⇝  ( 1  /  2 ) ) | 
						
							| 42 | 31 11 32 39 41 | isumclim | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  =  ( 1  /  2 ) ) | 
						
							| 43 | 30 42 | breqtrd | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 1 ) ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  ( 1  /  2 ) ) | 
						
							| 44 | 5 43 | eqbrtrid | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  ( 1  /  2 ) ) | 
						
							| 45 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 46 | 24 26 45 | ltleii | ⊢ ( 1  /  2 )  ≤  1 | 
						
							| 47 | 46 | a1i | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  ( 1  /  2 )  ≤  1 ) | 
						
							| 48 | 10 25 27 44 47 | letrd | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  1 ) | 
						
							| 49 |  | elicc01 | ⊢ ( Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ( 0 [,] 1 )  ↔  ( Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ℝ  ∧  0  ≤  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∧  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ≤  1 ) ) | 
						
							| 50 | 10 23 48 49 | syl3anbrc | ⊢ ( 𝑦  ∈  𝒫  ℕ  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 51 |  | elpwi | ⊢ ( 𝑧  ∈  𝒫  ℕ  →  𝑧  ⊆  ℕ ) | 
						
							| 52 |  | ssdifss | ⊢ ( 𝑦  ⊆  ℕ  →  ( 𝑦  ∖  𝑧 )  ⊆  ℕ ) | 
						
							| 53 |  | ssdifss | ⊢ ( 𝑧  ⊆  ℕ  →  ( 𝑧  ∖  𝑦 )  ⊆  ℕ ) | 
						
							| 54 |  | unss | ⊢ ( ( ( 𝑦  ∖  𝑧 )  ⊆  ℕ  ∧  ( 𝑧  ∖  𝑦 )  ⊆  ℕ )  ↔  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ⊆  ℕ ) | 
						
							| 55 | 54 | biimpi | ⊢ ( ( ( 𝑦  ∖  𝑧 )  ⊆  ℕ  ∧  ( 𝑧  ∖  𝑦 )  ⊆  ℕ )  →  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ⊆  ℕ ) | 
						
							| 56 | 52 53 55 | syl2an | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  →  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ⊆  ℕ ) | 
						
							| 57 | 3 51 56 | syl2an | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ⊆  ℕ ) | 
						
							| 58 |  | eqss | ⊢ ( 𝑦  =  𝑧  ↔  ( 𝑦  ⊆  𝑧  ∧  𝑧  ⊆  𝑦 ) ) | 
						
							| 59 |  | ssdif0 | ⊢ ( 𝑦  ⊆  𝑧  ↔  ( 𝑦  ∖  𝑧 )  =  ∅ ) | 
						
							| 60 |  | ssdif0 | ⊢ ( 𝑧  ⊆  𝑦  ↔  ( 𝑧  ∖  𝑦 )  =  ∅ ) | 
						
							| 61 | 59 60 | anbi12i | ⊢ ( ( 𝑦  ⊆  𝑧  ∧  𝑧  ⊆  𝑦 )  ↔  ( ( 𝑦  ∖  𝑧 )  =  ∅  ∧  ( 𝑧  ∖  𝑦 )  =  ∅ ) ) | 
						
							| 62 |  | un00 | ⊢ ( ( ( 𝑦  ∖  𝑧 )  =  ∅  ∧  ( 𝑧  ∖  𝑦 )  =  ∅ )  ↔  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  =  ∅ ) | 
						
							| 63 | 58 61 62 | 3bitri | ⊢ ( 𝑦  =  𝑧  ↔  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  =  ∅ ) | 
						
							| 64 | 63 | necon3bii | ⊢ ( 𝑦  ≠  𝑧  ↔  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ≠  ∅ ) | 
						
							| 65 | 64 | biimpi | ⊢ ( 𝑦  ≠  𝑧  →  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ≠  ∅ ) | 
						
							| 66 |  | nnwo | ⊢ ( ( ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ⊆  ℕ  ∧  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ≠  ∅ )  →  ∃ 𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛 ) | 
						
							| 67 | 57 65 66 | syl2an | ⊢ ( ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  ∧  𝑦  ≠  𝑧 )  →  ∃ 𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛 ) | 
						
							| 68 | 67 | ex | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( 𝑦  ≠  𝑧  →  ∃ 𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛 ) ) | 
						
							| 69 | 57 | sselda | ⊢ ( ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  ∧  𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 70 |  | df-ral | ⊢ ( ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛  ↔  ∀ 𝑛 ( 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  →  𝑚  ≤  𝑛 ) ) | 
						
							| 71 |  | con34b | ⊢ ( ( 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  →  𝑚  ≤  𝑛 )  ↔  ( ¬  𝑚  ≤  𝑛  →  ¬  𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ) ) | 
						
							| 72 |  | eldif | ⊢ ( 𝑛  ∈  ( 𝑦  ∖  𝑧 )  ↔  ( 𝑛  ∈  𝑦  ∧  ¬  𝑛  ∈  𝑧 ) ) | 
						
							| 73 |  | eldif | ⊢ ( 𝑛  ∈  ( 𝑧  ∖  𝑦 )  ↔  ( 𝑛  ∈  𝑧  ∧  ¬  𝑛  ∈  𝑦 ) ) | 
						
							| 74 | 72 73 | orbi12i | ⊢ ( ( 𝑛  ∈  ( 𝑦  ∖  𝑧 )  ∨  𝑛  ∈  ( 𝑧  ∖  𝑦 ) )  ↔  ( ( 𝑛  ∈  𝑦  ∧  ¬  𝑛  ∈  𝑧 )  ∨  ( 𝑛  ∈  𝑧  ∧  ¬  𝑛  ∈  𝑦 ) ) ) | 
						
							| 75 |  | elun | ⊢ ( 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ↔  ( 𝑛  ∈  ( 𝑦  ∖  𝑧 )  ∨  𝑛  ∈  ( 𝑧  ∖  𝑦 ) ) ) | 
						
							| 76 |  | xor | ⊢ ( ¬  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 )  ↔  ( ( 𝑛  ∈  𝑦  ∧  ¬  𝑛  ∈  𝑧 )  ∨  ( 𝑛  ∈  𝑧  ∧  ¬  𝑛  ∈  𝑦 ) ) ) | 
						
							| 77 | 74 75 76 | 3bitr4ri | ⊢ ( ¬  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 )  ↔  𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ) | 
						
							| 78 | 77 | con1bii | ⊢ ( ¬  𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  ↔  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) | 
						
							| 79 | 78 | imbi2i | ⊢ ( ( ¬  𝑚  ≤  𝑛  →  ¬  𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) )  ↔  ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 80 | 71 79 | bitri | ⊢ ( ( 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  →  𝑚  ≤  𝑛 )  ↔  ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 81 | 80 | albii | ⊢ ( ∀ 𝑛 ( 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) )  →  𝑚  ≤  𝑛 )  ↔  ∀ 𝑛 ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 82 | 70 81 | bitri | ⊢ ( ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛  ↔  ∀ 𝑛 ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 83 |  | alral | ⊢ ( ∀ 𝑛 ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  →  ∀ 𝑛  ∈  ℕ ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 84 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 85 |  | nnre | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ ) | 
						
							| 86 |  | ltnle | ⊢ ( ( 𝑛  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( 𝑛  <  𝑚  ↔  ¬  𝑚  ≤  𝑛 ) ) | 
						
							| 87 | 84 85 86 | syl2anr | ⊢ ( ( 𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  <  𝑚  ↔  ¬  𝑚  ≤  𝑛 ) ) | 
						
							| 88 | 87 | imbi1d | ⊢ ( ( 𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  ↔  ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 89 | 88 | ralbidva | ⊢ ( 𝑚  ∈  ℕ  →  ( ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  ↔  ∀ 𝑛  ∈  ℕ ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 90 | 83 89 | imbitrrid | ⊢ ( 𝑚  ∈  ℕ  →  ( ∀ 𝑛 ( ¬  𝑚  ≤  𝑛  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 91 | 82 90 | biimtrid | ⊢ ( 𝑚  ∈  ℕ  →  ( ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 92 | 69 91 | syl | ⊢ ( ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  ∧  𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) )  →  ( ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 93 | 92 | reximdva | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( ∃ 𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ∀ 𝑛  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) 𝑚  ≤  𝑛  →  ∃ 𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 94 | 68 93 | syld | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( 𝑦  ≠  𝑧  →  ∃ 𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 95 |  | rexun | ⊢ ( ∃ 𝑚  ∈  ( ( 𝑦  ∖  𝑧 )  ∪  ( 𝑧  ∖  𝑦 ) ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  ↔  ( ∃ 𝑚  ∈  ( 𝑦  ∖  𝑧 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  ∨  ∃ 𝑚  ∈  ( 𝑧  ∖  𝑦 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) | 
						
							| 96 | 94 95 | imbitrdi | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( 𝑦  ≠  𝑧  →  ( ∃ 𝑚  ∈  ( 𝑦  ∖  𝑧 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  ∨  ∃ 𝑚  ∈  ( 𝑧  ∖  𝑦 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) ) ) | 
						
							| 97 |  | simpll | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑦  ∖  𝑧 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  𝑦  ⊆  ℕ ) | 
						
							| 98 |  | simplr | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑦  ∖  𝑧 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  𝑧  ⊆  ℕ ) | 
						
							| 99 |  | simprl | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑦  ∖  𝑧 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  𝑚  ∈  ( 𝑦  ∖  𝑧 ) ) | 
						
							| 100 |  | simprr | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑦  ∖  𝑧 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 101 |  | biid | ⊢ ( Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 )  ↔  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 102 | 1 97 98 99 100 101 | rpnnen2lem11 | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑦  ∖  𝑧 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  ¬  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 103 | 102 | rexlimdvaa | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  →  ( ∃ 𝑚  ∈  ( 𝑦  ∖  𝑧 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  →  ¬  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) | 
						
							| 104 |  | simplr | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑧  ∖  𝑦 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  𝑧  ⊆  ℕ ) | 
						
							| 105 |  | simpll | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑧  ∖  𝑦 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  𝑦  ⊆  ℕ ) | 
						
							| 106 |  | simprl | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑧  ∖  𝑦 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  𝑚  ∈  ( 𝑧  ∖  𝑦 ) ) | 
						
							| 107 |  | simprr | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑧  ∖  𝑦 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 108 |  | bicom | ⊢ ( ( 𝑛  ∈  𝑧  ↔  𝑛  ∈  𝑦 )  ↔  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) | 
						
							| 109 | 108 | imbi2i | ⊢ ( ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑧  ↔  𝑛  ∈  𝑦 ) )  ↔  ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 110 | 109 | ralbii | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑧  ↔  𝑛  ∈  𝑦 ) )  ↔  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) | 
						
							| 111 | 107 110 | sylibr | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑧  ∖  𝑦 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑧  ↔  𝑛  ∈  𝑦 ) ) ) | 
						
							| 112 |  | eqcom | ⊢ ( Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 )  ↔  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 ) ) | 
						
							| 113 | 1 104 105 106 111 112 | rpnnen2lem11 | ⊢ ( ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  ∧  ( 𝑚  ∈  ( 𝑧  ∖  𝑦 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) ) )  →  ¬  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 114 | 113 | rexlimdvaa | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  →  ( ∃ 𝑚  ∈  ( 𝑧  ∖  𝑦 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  →  ¬  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) | 
						
							| 115 | 103 114 | jaod | ⊢ ( ( 𝑦  ⊆  ℕ  ∧  𝑧  ⊆  ℕ )  →  ( ( ∃ 𝑚  ∈  ( 𝑦  ∖  𝑧 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  ∨  ∃ 𝑚  ∈  ( 𝑧  ∖  𝑦 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) )  →  ¬  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) | 
						
							| 116 | 3 51 115 | syl2an | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( ( ∃ 𝑚  ∈  ( 𝑦  ∖  𝑧 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) )  ∨  ∃ 𝑚  ∈  ( 𝑧  ∖  𝑦 ) ∀ 𝑛  ∈  ℕ ( 𝑛  <  𝑚  →  ( 𝑛  ∈  𝑦  ↔  𝑛  ∈  𝑧 ) ) )  →  ¬  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) | 
						
							| 117 | 96 116 | syld | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( 𝑦  ≠  𝑧  →  ¬  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) | 
						
							| 118 | 117 | necon4ad | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 )  →  𝑦  =  𝑧 ) ) | 
						
							| 119 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 120 | 119 | fveq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 121 | 120 | sumeq2sdv | ⊢ ( 𝑦  =  𝑧  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 122 | 118 121 | impbid1 | ⊢ ( ( 𝑦  ∈  𝒫  ℕ  ∧  𝑧  ∈  𝒫  ℕ )  →  ( Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 123 | 50 122 | dom2 | ⊢ ( ( 0 [,] 1 )  ∈  V  →  𝒫  ℕ  ≼  ( 0 [,] 1 ) ) | 
						
							| 124 | 2 123 | ax-mp | ⊢ 𝒫  ℕ  ≼  ( 0 [,] 1 ) |