| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 3 | 2 | elpw2 | ⊢ ( 𝐴  ∈  𝒫  ℕ  ↔  𝐴  ⊆  ℕ ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑛  ∈  𝑥  ↔  𝑛  ∈  𝐴 ) ) | 
						
							| 5 | 4 | ifbid | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 )  =  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) | 
						
							| 6 | 5 | mpteq2dv | ⊢ ( 𝑥  =  𝐴  →  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 7 | 2 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) )  ∈  V | 
						
							| 8 | 6 1 7 | fvmpt | ⊢ ( 𝐴  ∈  𝒫  ℕ  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 9 | 3 8 | sylbir | ⊢ ( 𝐴  ⊆  ℕ  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 12 |  | nndivre | ⊢ ( ( 1  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 13 | 10 11 12 | mp2an | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 14 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 15 |  | reexpcl | ⊢ ( ( ( 1  /  3 )  ∈  ℝ  ∧  𝑛  ∈  ℕ0 )  →  ( ( 1  /  3 ) ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 16 | 13 14 15 | sylancr | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 1  /  3 ) ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 17 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 18 |  | ifcl | ⊢ ( ( ( ( 1  /  3 ) ↑ 𝑛 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 )  ∈  ℝ ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( 𝑛  ∈  ℕ  →  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 )  ∈  ℝ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑛  ∈  ℕ )  →  if ( 𝑛  ∈  𝐴 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 )  ∈  ℝ ) | 
						
							| 21 | 9 20 | fmpt3d | ⊢ ( 𝐴  ⊆  ℕ  →  ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |