| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 3 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 4 |  | nndivre | ⊢ ( ( 1  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 5 | 2 3 4 | mp2an | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 6 | 5 | recni | ⊢ ( 1  /  3 )  ∈  ℂ | 
						
							| 7 | 6 | a1i | ⊢ ( ⊤  →  ( 1  /  3 )  ∈  ℂ ) | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 10 |  | 3pos | ⊢ 0  <  3 | 
						
							| 11 | 9 10 | recgt0ii | ⊢ 0  <  ( 1  /  3 ) | 
						
							| 12 | 8 5 11 | ltleii | ⊢ 0  ≤  ( 1  /  3 ) | 
						
							| 13 |  | absid | ⊢ ( ( ( 1  /  3 )  ∈  ℝ  ∧  0  ≤  ( 1  /  3 ) )  →  ( abs ‘ ( 1  /  3 ) )  =  ( 1  /  3 ) ) | 
						
							| 14 | 5 12 13 | mp2an | ⊢ ( abs ‘ ( 1  /  3 ) )  =  ( 1  /  3 ) | 
						
							| 15 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 16 |  | recgt1 | ⊢ ( ( 3  ∈  ℝ  ∧  0  <  3 )  →  ( 1  <  3  ↔  ( 1  /  3 )  <  1 ) ) | 
						
							| 17 | 9 10 16 | mp2an | ⊢ ( 1  <  3  ↔  ( 1  /  3 )  <  1 ) | 
						
							| 18 | 15 17 | mpbi | ⊢ ( 1  /  3 )  <  1 | 
						
							| 19 | 14 18 | eqbrtri | ⊢ ( abs ‘ ( 1  /  3 ) )  <  1 | 
						
							| 20 | 19 | a1i | ⊢ ( ⊤  →  ( abs ‘ ( 1  /  3 ) )  <  1 ) | 
						
							| 21 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 22 | 21 | a1i | ⊢ ( ⊤  →  1  ∈  ℕ0 ) | 
						
							| 23 |  | ssid | ⊢ ℕ  ⊆  ℕ | 
						
							| 24 |  | simpr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 25 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 26 | 24 25 | eleqtrrdi | ⊢ ( ( ⊤  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 27 | 1 | rpnnen2lem1 | ⊢ ( ( ℕ  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ℕ ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 28 | 23 26 27 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ℕ ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 29 | 26 | iftrued | ⊢ ( ( ⊤  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  if ( 𝑘  ∈  ℕ ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 )  =  ( ( 1  /  3 ) ↑ 𝑘 ) ) | 
						
							| 30 | 28 29 | eqtrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  =  ( ( 1  /  3 ) ↑ 𝑘 ) ) | 
						
							| 31 | 7 20 22 30 | geolim2 | ⊢ ( ⊤  →  seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ⇝  ( ( ( 1  /  3 ) ↑ 1 )  /  ( 1  −  ( 1  /  3 ) ) ) ) | 
						
							| 32 | 31 | mptru | ⊢ seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ⇝  ( ( ( 1  /  3 ) ↑ 1 )  /  ( 1  −  ( 1  /  3 ) ) ) | 
						
							| 33 |  | exp1 | ⊢ ( ( 1  /  3 )  ∈  ℂ  →  ( ( 1  /  3 ) ↑ 1 )  =  ( 1  /  3 ) ) | 
						
							| 34 | 6 33 | ax-mp | ⊢ ( ( 1  /  3 ) ↑ 1 )  =  ( 1  /  3 ) | 
						
							| 35 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 36 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 37 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 38 | 35 37 | pm3.2i | ⊢ ( 3  ∈  ℂ  ∧  3  ≠  0 ) | 
						
							| 39 |  | divsubdir | ⊢ ( ( 3  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( ( 3  −  1 )  /  3 )  =  ( ( 3  /  3 )  −  ( 1  /  3 ) ) ) | 
						
							| 40 | 35 36 38 39 | mp3an | ⊢ ( ( 3  −  1 )  /  3 )  =  ( ( 3  /  3 )  −  ( 1  /  3 ) ) | 
						
							| 41 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 42 | 41 | oveq1i | ⊢ ( ( 3  −  1 )  /  3 )  =  ( 2  /  3 ) | 
						
							| 43 | 35 37 | dividi | ⊢ ( 3  /  3 )  =  1 | 
						
							| 44 | 43 | oveq1i | ⊢ ( ( 3  /  3 )  −  ( 1  /  3 ) )  =  ( 1  −  ( 1  /  3 ) ) | 
						
							| 45 | 40 42 44 | 3eqtr3ri | ⊢ ( 1  −  ( 1  /  3 ) )  =  ( 2  /  3 ) | 
						
							| 46 | 34 45 | oveq12i | ⊢ ( ( ( 1  /  3 ) ↑ 1 )  /  ( 1  −  ( 1  /  3 ) ) )  =  ( ( 1  /  3 )  /  ( 2  /  3 ) ) | 
						
							| 47 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 48 |  | divcan7 | ⊢ ( ( 1  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( ( 1  /  3 )  /  ( 2  /  3 ) )  =  ( 1  /  2 ) ) | 
						
							| 49 | 36 47 38 48 | mp3an | ⊢ ( ( 1  /  3 )  /  ( 2  /  3 ) )  =  ( 1  /  2 ) | 
						
							| 50 | 46 49 | eqtri | ⊢ ( ( ( 1  /  3 ) ↑ 1 )  /  ( 1  −  ( 1  /  3 ) ) )  =  ( 1  /  2 ) | 
						
							| 51 | 32 50 | breqtri | ⊢ seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ⇝  ( 1  /  2 ) |