Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
3nn |
⊢ 3 ∈ ℕ |
4 |
|
nndivre |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) |
5 |
2 3 4
|
mp2an |
⊢ ( 1 / 3 ) ∈ ℝ |
6 |
5
|
recni |
⊢ ( 1 / 3 ) ∈ ℂ |
7 |
6
|
a1i |
⊢ ( ⊤ → ( 1 / 3 ) ∈ ℂ ) |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
3re |
⊢ 3 ∈ ℝ |
10 |
|
3pos |
⊢ 0 < 3 |
11 |
9 10
|
recgt0ii |
⊢ 0 < ( 1 / 3 ) |
12 |
8 5 11
|
ltleii |
⊢ 0 ≤ ( 1 / 3 ) |
13 |
|
absid |
⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 0 ≤ ( 1 / 3 ) ) → ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) ) |
14 |
5 12 13
|
mp2an |
⊢ ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) |
15 |
|
1lt3 |
⊢ 1 < 3 |
16 |
|
recgt1 |
⊢ ( ( 3 ∈ ℝ ∧ 0 < 3 ) → ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) ) |
17 |
9 10 16
|
mp2an |
⊢ ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) |
18 |
15 17
|
mpbi |
⊢ ( 1 / 3 ) < 1 |
19 |
14 18
|
eqbrtri |
⊢ ( abs ‘ ( 1 / 3 ) ) < 1 |
20 |
19
|
a1i |
⊢ ( ⊤ → ( abs ‘ ( 1 / 3 ) ) < 1 ) |
21 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
22 |
21
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
23 |
|
ssid |
⊢ ℕ ⊆ ℕ |
24 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
25 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
26 |
24 25
|
eleqtrrdi |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ℕ ) |
27 |
1
|
rpnnen2lem1 |
⊢ ( ( ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℕ , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
28 |
23 26 27
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℕ , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
29 |
26
|
iftrued |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → if ( 𝑘 ∈ ℕ , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
30 |
28 29
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
31 |
7 20 22 30
|
geolim2 |
⊢ ( ⊤ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) ) |
32 |
31
|
mptru |
⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) |
33 |
|
exp1 |
⊢ ( ( 1 / 3 ) ∈ ℂ → ( ( 1 / 3 ) ↑ 1 ) = ( 1 / 3 ) ) |
34 |
6 33
|
ax-mp |
⊢ ( ( 1 / 3 ) ↑ 1 ) = ( 1 / 3 ) |
35 |
|
3cn |
⊢ 3 ∈ ℂ |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
|
3ne0 |
⊢ 3 ≠ 0 |
38 |
35 37
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
39 |
|
divsubdir |
⊢ ( ( 3 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) ) |
40 |
35 36 38 39
|
mp3an |
⊢ ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) |
41 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
42 |
41
|
oveq1i |
⊢ ( ( 3 − 1 ) / 3 ) = ( 2 / 3 ) |
43 |
35 37
|
dividi |
⊢ ( 3 / 3 ) = 1 |
44 |
43
|
oveq1i |
⊢ ( ( 3 / 3 ) − ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
45 |
40 42 44
|
3eqtr3ri |
⊢ ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) |
46 |
34 45
|
oveq12i |
⊢ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) = ( ( 1 / 3 ) / ( 2 / 3 ) ) |
47 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
48 |
|
divcan7 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) ) |
49 |
36 47 38 48
|
mp3an |
⊢ ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) |
50 |
46 49
|
eqtri |
⊢ ( ( ( 1 / 3 ) ↑ 1 ) / ( 1 − ( 1 / 3 ) ) ) = ( 1 / 2 ) |
51 |
32 50
|
breqtri |
⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) |