Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
3 |
|
1nn |
⊢ 1 ∈ ℕ |
4 |
3
|
a1i |
⊢ ( 𝐴 ⊆ ℕ → 1 ∈ ℕ ) |
5 |
|
ssid |
⊢ ℕ ⊆ ℕ |
6 |
1
|
rpnnen2lem2 |
⊢ ( ℕ ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) |
7 |
5 6
|
mp1i |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) |
8 |
7
|
ffvelrnda |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℝ ) |
9 |
1
|
rpnnen2lem2 |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
10 |
9
|
ffvelrnda |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
11 |
1
|
rpnnen2lem3 |
⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) |
12 |
|
seqex |
⊢ seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ V |
13 |
|
ovex |
⊢ ( 1 / 2 ) ∈ V |
14 |
12 13
|
breldm |
⊢ ( seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ dom ⇝ ) |
15 |
11 14
|
mp1i |
⊢ ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ dom ⇝ ) |
16 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
17 |
1
|
rpnnen2lem4 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
18 |
5 17
|
mp3an2 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
19 |
16 18
|
sylan2br |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) |
20 |
19
|
simpld |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
21 |
19
|
simprd |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) |
22 |
2 4 8 10 15 20 21
|
cvgcmp |
⊢ ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
24 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
25 |
10
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℂ ) |
27 |
2 24 26
|
iserex |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ↔ seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) ) |
28 |
23 27
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |