| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 3 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ⊆  ℕ  →  1  ∈  ℕ ) | 
						
							| 5 |  | ssid | ⊢ ℕ  ⊆  ℕ | 
						
							| 6 | 1 | rpnnen2lem2 | ⊢ ( ℕ  ⊆  ℕ  →  ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( 𝐴  ⊆  ℕ  →  ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ ) | 
						
							| 8 | 7 | ffvelcdmda | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 9 | 1 | rpnnen2lem2 | ⊢ ( 𝐴  ⊆  ℕ  →  ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) | 
						
							| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 11 | 1 | rpnnen2lem3 | ⊢ seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ⇝  ( 1  /  2 ) | 
						
							| 12 |  | seqex | ⊢ seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ∈  V | 
						
							| 13 |  | ovex | ⊢ ( 1  /  2 )  ∈  V | 
						
							| 14 | 12 13 | breldm | ⊢ ( seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ⇝  ( 1  /  2 )  →  seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ∈  dom   ⇝  ) | 
						
							| 15 | 11 14 | mp1i | ⊢ ( 𝐴  ⊆  ℕ  →  seq 1 (  +  ,  ( 𝐹 ‘ ℕ ) )  ∈  dom   ⇝  ) | 
						
							| 16 |  | elnnuz | ⊢ ( 𝑘  ∈  ℕ  ↔  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 17 | 1 | rpnnen2lem4 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  ℕ  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) | 
						
							| 18 | 5 17 | mp3an2 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) | 
						
							| 19 | 16 18 | sylan2br | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) ) | 
						
							| 20 | 19 | simpld | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  0  ≤  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | 
						
							| 21 | 19 | simprd | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) | 
						
							| 22 | 2 4 8 10 15 20 21 | cvgcmp | ⊢ ( 𝐴  ⊆  ℕ  →  seq 1 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 25 | 10 | adantlr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 26 | 25 | recnd | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 27 | 2 24 26 | iserex | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  ( seq 1 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝   ↔  seq 𝑀 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) ) | 
						
							| 28 | 23 27 | mpbid | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 𝑀 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) |