Metamath Proof Explorer


Theorem rpnnen2lem6

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
Assertion rpnnen2lem6 ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ𝑀 ) ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
2 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
3 nnz ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ )
4 3 adantl ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ )
5 eqidd ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) = ( ( 𝐹𝐴 ) ‘ 𝑘 ) )
6 1 rpnnen2lem2 ( 𝐴 ⊆ ℕ → ( 𝐹𝐴 ) : ℕ ⟶ ℝ )
7 6 ad2antrr ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( 𝐹𝐴 ) : ℕ ⟶ ℝ )
8 eluznn ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → 𝑘 ∈ ℕ )
9 8 adantll ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → 𝑘 ∈ ℕ )
10 7 9 ffvelrnd ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℝ )
11 1 rpnnen2lem5 ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ )
12 2 4 5 10 11 isumrecl ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ𝑀 ) ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℝ )