| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 4 | 3 | nnzd | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | eqidd | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | 
						
							| 6 |  | eluznn | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 7 | 3 6 | sylan | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 8 |  | sstr | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ )  →  𝐴  ⊆  ℕ ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  𝐴  ⊆  ℕ ) | 
						
							| 10 | 1 | rpnnen2lem2 | ⊢ ( 𝐴  ⊆  ℕ  →  ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) | 
						
							| 12 | 11 | ffvelcdmda | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 13 | 7 12 | syldan | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 14 |  | eqidd | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 15 | 1 | rpnnen2lem2 | ⊢ ( 𝐵  ⊆  ℕ  →  ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) | 
						
							| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) | 
						
							| 17 | 16 | ffvelcdmda | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 18 | 7 17 | syldan | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 19 | 1 | rpnnen2lem4 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∧  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 20 | 19 | simprd | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 21 | 20 | 3expa | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 22 | 21 | 3adantl3 | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 23 | 7 22 | syldan | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | 
						
							| 24 | 1 | rpnnen2lem5 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 𝑀 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) | 
						
							| 25 | 8 24 | stoic3 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 𝑀 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) | 
						
							| 26 | 1 | rpnnen2lem5 | ⊢ ( ( 𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 𝑀 (  +  ,  ( 𝐹 ‘ 𝐵 ) )  ∈  dom   ⇝  ) | 
						
							| 27 | 26 | 3adant1 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 𝑀 (  +  ,  ( 𝐹 ‘ 𝐵 ) )  ∈  dom   ⇝  ) | 
						
							| 28 | 2 4 5 13 14 18 23 25 27 | isumle | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |