Metamath Proof Explorer


Theorem rpnnen2lem7

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
Assertion rpnnen2lem7 ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ𝑀 ) ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ𝑀 ) ( ( 𝐹𝐵 ) ‘ 𝑘 ) )

Proof

Step Hyp Ref Expression
1 rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
2 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
3 simp3 ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ )
4 3 nnzd ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ )
5 eqidd ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) = ( ( 𝐹𝐴 ) ‘ 𝑘 ) )
6 eluznn ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → 𝑘 ∈ ℕ )
7 3 6 sylan ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → 𝑘 ∈ ℕ )
8 sstr ( ( 𝐴𝐵𝐵 ⊆ ℕ ) → 𝐴 ⊆ ℕ )
9 8 3adant3 ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝐴 ⊆ ℕ )
10 1 rpnnen2lem2 ( 𝐴 ⊆ ℕ → ( 𝐹𝐴 ) : ℕ ⟶ ℝ )
11 9 10 syl ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹𝐴 ) : ℕ ⟶ ℝ )
12 11 ffvelrnda ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℝ )
13 7 12 syldan ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℝ )
14 eqidd ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝐵 ) ‘ 𝑘 ) = ( ( 𝐹𝐵 ) ‘ 𝑘 ) )
15 1 rpnnen2lem2 ( 𝐵 ⊆ ℕ → ( 𝐹𝐵 ) : ℕ ⟶ ℝ )
16 15 3ad2ant2 ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹𝐵 ) : ℕ ⟶ ℝ )
17 16 ffvelrnda ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐵 ) ‘ 𝑘 ) ∈ ℝ )
18 7 17 syldan ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝐵 ) ‘ 𝑘 ) ∈ ℝ )
19 1 rpnnen2lem4 ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹𝐵 ) ‘ 𝑘 ) ) )
20 19 simprd ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹𝐵 ) ‘ 𝑘 ) )
21 20 3expa ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹𝐵 ) ‘ 𝑘 ) )
22 21 3adantl3 ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹𝐵 ) ‘ 𝑘 ) )
23 7 22 syldan ( ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹𝐵 ) ‘ 𝑘 ) )
24 1 rpnnen2lem5 ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ )
25 8 24 stoic3 ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ )
26 1 rpnnen2lem5 ( ( 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹𝐵 ) ) ∈ dom ⇝ )
27 26 3adant1 ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹𝐵 ) ) ∈ dom ⇝ )
28 2 4 5 13 14 18 23 25 27 isumle ( ( 𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ𝑀 ) ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ𝑀 ) ( ( 𝐹𝐵 ) ‘ 𝑘 ) )