| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 3 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | eqidd | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | 
						
							| 6 | 1 | rpnnen2lem2 | ⊢ ( 𝐴  ⊆  ℕ  →  ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) | 
						
							| 8 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 10 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 11 | 1 | rpnnen2lem5 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  1  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) | 
						
							| 12 | 10 11 | mpan2 | ⊢ ( 𝐴  ⊆  ℕ  →  seq 1 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝐹 ‘ 𝐴 ) )  ∈  dom   ⇝  ) | 
						
							| 14 | 2 3 4 5 9 13 | isumsplit | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  Σ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  =  ( Σ 𝑘  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |