Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
3 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
5 |
|
eqidd |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
6 |
1
|
rpnnen2lem2 |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
8 |
7
|
ffvelrnda |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℂ ) |
10 |
|
1nn |
⊢ 1 ∈ ℕ |
11 |
1
|
rpnnen2lem5 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 1 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
12 |
10 11
|
mpan2 |
⊢ ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
14 |
2 3 4 5 9 13
|
isumsplit |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |