| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  ℕ  ↦  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  𝑥 ,  ( ( 1  /  3 ) ↑ 𝑛 ) ,  0 ) ) ) | 
						
							| 2 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | eqidd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 ) ) | 
						
							| 5 |  | eluznn | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 6 |  | difss | ⊢ ( ℕ  ∖  { 𝑀 } )  ⊆  ℕ | 
						
							| 7 | 1 | rpnnen2lem2 | ⊢ ( ( ℕ  ∖  { 𝑀 } )  ⊆  ℕ  →  ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) : ℕ ⟶ ℝ ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) : ℕ ⟶ ℝ | 
						
							| 9 | 8 | ffvelcdmi | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 11 | 5 10 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 12 | 1 | rpnnen2lem5 | ⊢ ( ( ( ℕ  ∖  { 𝑀 } )  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  seq 𝑀 (  +  ,  ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) )  ∈  dom   ⇝  ) | 
						
							| 13 | 6 12 | mpan | ⊢ ( 𝑀  ∈  ℕ  →  seq 𝑀 (  +  ,  ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) )  ∈  dom   ⇝  ) | 
						
							| 14 | 2 3 4 11 13 | isum1p | ⊢ ( 𝑀  ∈  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  ( ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑀 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 ) ) ) | 
						
							| 15 | 1 | rpnnen2lem1 | ⊢ ( ( ( ℕ  ∖  { 𝑀 } )  ⊆  ℕ  ∧  𝑀  ∈  ℕ )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑀 )  =  if ( 𝑀  ∈  ( ℕ  ∖  { 𝑀 } ) ,  ( ( 1  /  3 ) ↑ 𝑀 ) ,  0 ) ) | 
						
							| 16 | 6 15 | mpan | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑀 )  =  if ( 𝑀  ∈  ( ℕ  ∖  { 𝑀 } ) ,  ( ( 1  /  3 ) ↑ 𝑀 ) ,  0 ) ) | 
						
							| 17 |  | neldifsnd | ⊢ ( 𝑀  ∈  ℕ  →  ¬  𝑀  ∈  ( ℕ  ∖  { 𝑀 } ) ) | 
						
							| 18 | 17 | iffalsed | ⊢ ( 𝑀  ∈  ℕ  →  if ( 𝑀  ∈  ( ℕ  ∖  { 𝑀 } ) ,  ( ( 1  /  3 ) ↑ 𝑀 ) ,  0 )  =  0 ) | 
						
							| 19 | 16 18 | eqtrd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑀 )  =  0 ) | 
						
							| 20 |  | eqid | ⊢ ( ℤ≥ ‘ ( 𝑀  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) | 
						
							| 21 |  | peano2nn | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 22 | 21 | nnzd | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 23 |  | eqidd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 ) ) | 
						
							| 24 |  | eluznn | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 25 | 21 24 | sylan | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 26 | 25 10 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 27 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 28 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 29 |  | nndivre | ⊢ ( ( 1  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 30 | 27 28 29 | mp2an | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 31 | 30 | recni | ⊢ ( 1  /  3 )  ∈  ℂ | 
						
							| 32 | 31 | a1i | ⊢ ( 𝑀  ∈  ℕ  →  ( 1  /  3 )  ∈  ℂ ) | 
						
							| 33 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 34 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 35 |  | 3pos | ⊢ 0  <  3 | 
						
							| 36 | 34 35 | recgt0ii | ⊢ 0  <  ( 1  /  3 ) | 
						
							| 37 | 33 30 36 | ltleii | ⊢ 0  ≤  ( 1  /  3 ) | 
						
							| 38 |  | absid | ⊢ ( ( ( 1  /  3 )  ∈  ℝ  ∧  0  ≤  ( 1  /  3 ) )  →  ( abs ‘ ( 1  /  3 ) )  =  ( 1  /  3 ) ) | 
						
							| 39 | 30 37 38 | mp2an | ⊢ ( abs ‘ ( 1  /  3 ) )  =  ( 1  /  3 ) | 
						
							| 40 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 41 |  | recgt1 | ⊢ ( ( 3  ∈  ℝ  ∧  0  <  3 )  →  ( 1  <  3  ↔  ( 1  /  3 )  <  1 ) ) | 
						
							| 42 | 34 35 41 | mp2an | ⊢ ( 1  <  3  ↔  ( 1  /  3 )  <  1 ) | 
						
							| 43 | 40 42 | mpbi | ⊢ ( 1  /  3 )  <  1 | 
						
							| 44 | 39 43 | eqbrtri | ⊢ ( abs ‘ ( 1  /  3 ) )  <  1 | 
						
							| 45 | 44 | a1i | ⊢ ( 𝑀  ∈  ℕ  →  ( abs ‘ ( 1  /  3 ) )  <  1 ) | 
						
							| 46 | 21 | nnnn0d | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 47 | 1 | rpnnen2lem1 | ⊢ ( ( ( ℕ  ∖  { 𝑀 } )  ⊆  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ( ℕ  ∖  { 𝑀 } ) ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 48 | 6 47 | mpan | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ( ℕ  ∖  { 𝑀 } ) ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 49 | 25 48 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  if ( 𝑘  ∈  ( ℕ  ∖  { 𝑀 } ) ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 ) ) | 
						
							| 50 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 52 |  | eluzle | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝑀  +  1 )  ≤  𝑘 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑀  +  1 )  ≤  𝑘 ) | 
						
							| 54 |  | nnltp1le | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝑀  <  𝑘  ↔  ( 𝑀  +  1 )  ≤  𝑘 ) ) | 
						
							| 55 | 25 54 | syldan | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑀  <  𝑘  ↔  ( 𝑀  +  1 )  ≤  𝑘 ) ) | 
						
							| 56 | 53 55 | mpbird | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑀  <  𝑘 ) | 
						
							| 57 | 51 56 | gtned | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑘  ≠  𝑀 ) | 
						
							| 58 |  | eldifsn | ⊢ ( 𝑘  ∈  ( ℕ  ∖  { 𝑀 } )  ↔  ( 𝑘  ∈  ℕ  ∧  𝑘  ≠  𝑀 ) ) | 
						
							| 59 | 25 57 58 | sylanbrc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑘  ∈  ( ℕ  ∖  { 𝑀 } ) ) | 
						
							| 60 | 59 | iftrued | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  if ( 𝑘  ∈  ( ℕ  ∖  { 𝑀 } ) ,  ( ( 1  /  3 ) ↑ 𝑘 ) ,  0 )  =  ( ( 1  /  3 ) ↑ 𝑘 ) ) | 
						
							| 61 | 49 60 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  ( ( 1  /  3 ) ↑ 𝑘 ) ) | 
						
							| 62 | 32 45 46 61 | geolim2 | ⊢ ( 𝑀  ∈  ℕ  →  seq ( 𝑀  +  1 ) (  +  ,  ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) )  ⇝  ( ( ( 1  /  3 ) ↑ ( 𝑀  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) ) ) | 
						
							| 63 | 20 22 23 26 62 | isumclim | ⊢ ( 𝑀  ∈  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  ( ( ( 1  /  3 ) ↑ ( 𝑀  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) ) ) | 
						
							| 64 | 19 63 | oveq12d | ⊢ ( 𝑀  ∈  ℕ  →  ( ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑀 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 ) )  =  ( 0  +  ( ( ( 1  /  3 ) ↑ ( 𝑀  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) ) ) ) | 
						
							| 65 | 14 64 | eqtrd | ⊢ ( 𝑀  ∈  ℕ  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ ( ℕ  ∖  { 𝑀 } ) ) ‘ 𝑘 )  =  ( 0  +  ( ( ( 1  /  3 ) ↑ ( 𝑀  +  1 ) )  /  ( 1  −  ( 1  /  3 ) ) ) ) ) |