Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
2 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
4 |
|
eqidd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) |
5 |
|
eluznn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
6 |
|
difss |
⊢ ( ℕ ∖ { 𝑀 } ) ⊆ ℕ |
7 |
1
|
rpnnen2lem2 |
⊢ ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ → ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) : ℕ ⟶ ℝ ) |
8 |
6 7
|
ax-mp |
⊢ ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) : ℕ ⟶ ℝ |
9 |
8
|
ffvelrni |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℂ ) |
11 |
5 10
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℂ ) |
12 |
1
|
rpnnen2lem5 |
⊢ ( ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ) ∈ dom ⇝ ) |
13 |
6 12
|
mpan |
⊢ ( 𝑀 ∈ ℕ → seq 𝑀 ( + , ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ) ∈ dom ⇝ ) |
14 |
2 3 4 11 13
|
isum1p |
⊢ ( 𝑀 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) ) |
15 |
1
|
rpnnen2lem1 |
⊢ ( ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) = if ( 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑀 ) , 0 ) ) |
16 |
6 15
|
mpan |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) = if ( 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑀 ) , 0 ) ) |
17 |
|
neldifsnd |
⊢ ( 𝑀 ∈ ℕ → ¬ 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) ) |
18 |
17
|
iffalsed |
⊢ ( 𝑀 ∈ ℕ → if ( 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑀 ) , 0 ) = 0 ) |
19 |
16 18
|
eqtrd |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) = 0 ) |
20 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 𝑀 + 1 ) ) |
21 |
|
peano2nn |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ ) |
22 |
21
|
nnzd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℤ ) |
23 |
|
eqidd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) |
24 |
|
eluznn |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
25 |
21 24
|
sylan |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
26 |
25 10
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℂ ) |
27 |
|
1re |
⊢ 1 ∈ ℝ |
28 |
|
3nn |
⊢ 3 ∈ ℕ |
29 |
|
nndivre |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) |
30 |
27 28 29
|
mp2an |
⊢ ( 1 / 3 ) ∈ ℝ |
31 |
30
|
recni |
⊢ ( 1 / 3 ) ∈ ℂ |
32 |
31
|
a1i |
⊢ ( 𝑀 ∈ ℕ → ( 1 / 3 ) ∈ ℂ ) |
33 |
|
0re |
⊢ 0 ∈ ℝ |
34 |
|
3re |
⊢ 3 ∈ ℝ |
35 |
|
3pos |
⊢ 0 < 3 |
36 |
34 35
|
recgt0ii |
⊢ 0 < ( 1 / 3 ) |
37 |
33 30 36
|
ltleii |
⊢ 0 ≤ ( 1 / 3 ) |
38 |
|
absid |
⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 0 ≤ ( 1 / 3 ) ) → ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) ) |
39 |
30 37 38
|
mp2an |
⊢ ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) |
40 |
|
1lt3 |
⊢ 1 < 3 |
41 |
|
recgt1 |
⊢ ( ( 3 ∈ ℝ ∧ 0 < 3 ) → ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) ) |
42 |
34 35 41
|
mp2an |
⊢ ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) |
43 |
40 42
|
mpbi |
⊢ ( 1 / 3 ) < 1 |
44 |
39 43
|
eqbrtri |
⊢ ( abs ‘ ( 1 / 3 ) ) < 1 |
45 |
44
|
a1i |
⊢ ( 𝑀 ∈ ℕ → ( abs ‘ ( 1 / 3 ) ) < 1 ) |
46 |
21
|
nnnn0d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ0 ) |
47 |
1
|
rpnnen2lem1 |
⊢ ( ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
48 |
6 47
|
mpan |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
49 |
25 48
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
50 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
51 |
50
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
52 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝑀 + 1 ) ≤ 𝑘 ) |
53 |
52
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 + 1 ) ≤ 𝑘 ) |
54 |
|
nnltp1le |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑀 < 𝑘 ↔ ( 𝑀 + 1 ) ≤ 𝑘 ) ) |
55 |
25 54
|
syldan |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 < 𝑘 ↔ ( 𝑀 + 1 ) ≤ 𝑘 ) ) |
56 |
53 55
|
mpbird |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 < 𝑘 ) |
57 |
51 56
|
gtned |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ≠ 𝑀 ) |
58 |
|
eldifsn |
⊢ ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≠ 𝑀 ) ) |
59 |
25 57 58
|
sylanbrc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) ) |
60 |
59
|
iftrued |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
61 |
49 60
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
62 |
32 45 46 61
|
geolim2 |
⊢ ( 𝑀 ∈ ℕ → seq ( 𝑀 + 1 ) ( + , ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ) ⇝ ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) |
63 |
20 22 23 26 62
|
isumclim |
⊢ ( 𝑀 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) |
64 |
19 63
|
oveq12d |
⊢ ( 𝑀 ∈ ℕ → ( ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |
65 |
14 64
|
eqtrd |
⊢ ( 𝑀 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |