Metamath Proof Explorer


Theorem rppwr

Description: If A and B are relatively prime, then so are A ^ N and B ^ N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rppwr ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴𝑁 ) gcd ( 𝐵𝑁 ) ) = 1 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℕ )
2 simp3 ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ )
3 2 nnnn0d ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 )
4 1 3 nnexpcld ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴𝑁 ) ∈ ℕ )
5 simp2 ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐵 ∈ ℕ )
6 4 5 2 3jca ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴𝑁 ) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) )
7 rplpwr ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴𝑁 ) gcd 𝐵 ) = 1 ) )
8 rprpwr ( ( ( 𝐴𝑁 ) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴𝑁 ) gcd 𝐵 ) = 1 → ( ( 𝐴𝑁 ) gcd ( 𝐵𝑁 ) ) = 1 ) )
9 6 7 8 sylsyld ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴𝑁 ) gcd ( 𝐵𝑁 ) ) = 1 ) )