Metamath Proof Explorer


Theorem rpreccl

Description: Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008)

Ref Expression
Assertion rpreccl ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 1rp 1 ∈ ℝ+
2 rpdivcl ( ( 1 ∈ ℝ+𝐴 ∈ ℝ+ ) → ( 1 / 𝐴 ) ∈ ℝ+ )
3 1 2 mpan ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ )