Metamath Proof Explorer


Theorem rpreccld

Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rpreccld ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpreccl ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ )
3 1 2 syl ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ+ )