Metamath Proof Explorer


Theorem rprecred

Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rprecred ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 1 rpreccld ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ+ )
3 2 rpred ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ )