Metamath Proof Explorer


Theorem rprege0

Description: A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion rprege0 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 rpge0 ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 )
3 1 2 jca ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )