Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
Assertion | rprege0d | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
2 | 1 | rpred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 | 1 | rpge0d | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 | 2 3 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |