Metamath Proof Explorer


Theorem rprege0d

Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rprege0d ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 1 rpred ( 𝜑𝐴 ∈ ℝ )
3 1 rpge0d ( 𝜑 → 0 ≤ 𝐴 )
4 2 3 jca ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )