Metamath Proof Explorer


Theorem rprene0

Description: A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion rprene0 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )
3 1 2 jca ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) )