| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 2 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 3 |
1 2
|
sstri |
⊢ ℝ+ ⊆ ℂ |
| 4 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 5 |
|
rpmulcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) |
| 6 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 7 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 8 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 11 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 12 |
|
rpgt0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 < 𝐴 ) |
| 14 |
|
nn0ge0 |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝑘 ) |
| 16 |
10 11 13 15
|
addgtge0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( 𝐴 + 𝑘 ) ) |
| 17 |
9 16
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℝ+ ) |
| 18 |
3 4 5 17
|
risefaccllem |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℝ+ ) |