Step |
Hyp |
Ref |
Expression |
1 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
2 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
3 |
1 2
|
sstri |
⊢ ℝ+ ⊆ ℂ |
4 |
|
1rp |
⊢ 1 ∈ ℝ+ |
5 |
|
rpmulcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) |
6 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
7 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
8 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) |
10 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
11 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
12 |
|
rpgt0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 < 𝐴 ) |
14 |
|
nn0ge0 |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝑘 ) |
16 |
10 11 13 15
|
addgtge0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( 𝐴 + 𝑘 ) ) |
17 |
9 16
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℝ+ ) |
18 |
3 4 5 17
|
risefaccllem |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℝ+ ) |