Step |
Hyp |
Ref |
Expression |
1 |
|
rprmasso.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rprmasso.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
3 |
|
rprmasso.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
rprmasso.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
5 |
|
rprmasso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
rprmasso.1 |
⊢ ( 𝜑 → 𝑋 ∥ 𝑌 ) |
7 |
|
rprmasso.y |
⊢ ( 𝜑 → 𝑌 ∥ 𝑋 ) |
8 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
9 |
1 2 4 5
|
rprmcl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
10 |
1 3
|
dvdsrcl |
⊢ ( 𝑌 ∥ 𝑋 → 𝑌 ∈ 𝐵 ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
12 |
4
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
13 |
1 8 3 9 11 12
|
rspsnasso |
⊢ ( 𝜑 → ( ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) |
14 |
6 7 13
|
mpbi2and |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) |
15 |
4
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
16 |
5 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( RPrime ‘ 𝑅 ) ) |
17 |
8 15 16
|
rsprprmprmidl |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) |
18 |
14 17
|
eqeltrd |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
20 |
2 19 4 5
|
rprmnz |
⊢ ( 𝜑 → 𝑋 ≠ ( 0g ‘ 𝑅 ) ) |
21 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
22 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑅 ) ) → 𝑌 = ( 0g ‘ 𝑅 ) ) |
24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑅 ) ) → 𝑌 ∥ 𝑋 ) |
25 |
23 24
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∥ 𝑋 ) |
26 |
1 3 19
|
dvdsr02 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∥ 𝑋 ↔ 𝑋 = ( 0g ‘ 𝑅 ) ) ) |
27 |
26
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 0g ‘ 𝑅 ) ∥ 𝑋 ) → 𝑋 = ( 0g ‘ 𝑅 ) ) |
28 |
21 22 25 27
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑅 ) ) → 𝑋 = ( 0g ‘ 𝑅 ) ) |
29 |
20 28
|
mteqand |
⊢ ( 𝜑 → 𝑌 ≠ ( 0g ‘ 𝑅 ) ) |
30 |
19 1 2 8 4 11 29
|
rsprprmprmidlb |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝑃 ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
31 |
18 30
|
mpbird |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |