Metamath Proof Explorer


Theorem rprmasso

Description: In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmasso.b 𝐵 = ( Base ‘ 𝑅 )
rprmasso.p 𝑃 = ( RPrime ‘ 𝑅 )
rprmasso.d = ( ∥r𝑅 )
rprmasso.r ( 𝜑𝑅 ∈ IDomn )
rprmasso.x ( 𝜑𝑋𝑃 )
rprmasso.1 ( 𝜑𝑋 𝑌 )
rprmasso.y ( 𝜑𝑌 𝑋 )
Assertion rprmasso ( 𝜑𝑌𝑃 )

Proof

Step Hyp Ref Expression
1 rprmasso.b 𝐵 = ( Base ‘ 𝑅 )
2 rprmasso.p 𝑃 = ( RPrime ‘ 𝑅 )
3 rprmasso.d = ( ∥r𝑅 )
4 rprmasso.r ( 𝜑𝑅 ∈ IDomn )
5 rprmasso.x ( 𝜑𝑋𝑃 )
6 rprmasso.1 ( 𝜑𝑋 𝑌 )
7 rprmasso.y ( 𝜑𝑌 𝑋 )
8 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
9 1 2 4 5 rprmcl ( 𝜑𝑋𝐵 )
10 1 3 dvdsrcl ( 𝑌 𝑋𝑌𝐵 )
11 7 10 syl ( 𝜑𝑌𝐵 )
12 4 idomringd ( 𝜑𝑅 ∈ Ring )
13 1 8 3 9 11 12 rspsnasso ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) )
14 6 7 13 mpbi2and ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) )
15 4 idomcringd ( 𝜑𝑅 ∈ CRing )
16 5 2 eleqtrdi ( 𝜑𝑋 ∈ ( RPrime ‘ 𝑅 ) )
17 8 15 16 rsprprmprmidl ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ∈ ( PrmIdeal ‘ 𝑅 ) )
18 14 17 eqeltrd ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) ∈ ( PrmIdeal ‘ 𝑅 ) )
19 eqid ( 0g𝑅 ) = ( 0g𝑅 )
20 2 19 4 5 rprmnz ( 𝜑𝑋 ≠ ( 0g𝑅 ) )
21 12 adantr ( ( 𝜑𝑌 = ( 0g𝑅 ) ) → 𝑅 ∈ Ring )
22 9 adantr ( ( 𝜑𝑌 = ( 0g𝑅 ) ) → 𝑋𝐵 )
23 simpr ( ( 𝜑𝑌 = ( 0g𝑅 ) ) → 𝑌 = ( 0g𝑅 ) )
24 7 adantr ( ( 𝜑𝑌 = ( 0g𝑅 ) ) → 𝑌 𝑋 )
25 23 24 eqbrtrrd ( ( 𝜑𝑌 = ( 0g𝑅 ) ) → ( 0g𝑅 ) 𝑋 )
26 1 3 19 dvdsr02 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( ( 0g𝑅 ) 𝑋𝑋 = ( 0g𝑅 ) ) )
27 26 biimpa ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ ( 0g𝑅 ) 𝑋 ) → 𝑋 = ( 0g𝑅 ) )
28 21 22 25 27 syl21anc ( ( 𝜑𝑌 = ( 0g𝑅 ) ) → 𝑋 = ( 0g𝑅 ) )
29 20 28 mteqand ( 𝜑𝑌 ≠ ( 0g𝑅 ) )
30 19 1 2 8 4 11 29 rsprprmprmidlb ( 𝜑 → ( 𝑌𝑃 ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑌 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) )
31 18 30 mpbird ( 𝜑𝑌𝑃 )