Step |
Hyp |
Ref |
Expression |
1 |
|
rprmasso.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rprmasso.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
3 |
|
rprmasso.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
rprmasso.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
5 |
|
rprmasso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
rprmasso.1 |
⊢ ( 𝜑 → 𝑋 ∥ 𝑌 ) |
7 |
|
rprmasso2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
9 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑅 ∈ IDomn ) |
10 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌 ∈ 𝑃 ) |
11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑡 ∈ 𝐵 ) |
12 |
1 2 4 5
|
rprmcl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
14 |
4
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
15 |
1 2 4 7
|
rprmcl |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
16 |
1 3
|
dvdsrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∥ 𝑌 ) |
17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∥ 𝑌 ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌 ∥ 𝑌 ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) |
20 |
18 19
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌 ∥ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) |
21 |
1 2 3 8 9 10 11 13 20
|
rprmdvds |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → ( 𝑌 ∥ 𝑡 ∨ 𝑌 ∥ 𝑋 ) ) |
22 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) → 𝑋 ∈ 𝐵 ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
24 |
11
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑡 ∈ 𝐵 ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g ‘ 𝑅 ) ) → 𝑡 = ( 0g ‘ 𝑅 ) ) |
26 |
25
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g ‘ 𝑅 ) ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
27 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g ‘ 𝑅 ) ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) |
28 |
1 8 23 14 12
|
ringlzd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
29 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
30 |
26 27 29
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g ‘ 𝑅 ) ) → 𝑌 = ( 0g ‘ 𝑅 ) ) |
31 |
2 23 4 7
|
rprmnz |
⊢ ( 𝜑 → 𝑌 ≠ ( 0g ‘ 𝑅 ) ) |
32 |
31
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g ‘ 𝑅 ) ) → 𝑌 ≠ ( 0g ‘ 𝑅 ) ) |
33 |
32
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g ‘ 𝑅 ) ) → ¬ 𝑌 = ( 0g ‘ 𝑅 ) ) |
34 |
30 33
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → ¬ 𝑡 = ( 0g ‘ 𝑅 ) ) |
35 |
34
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑡 ≠ ( 0g ‘ 𝑅 ) ) |
36 |
35
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑡 ≠ ( 0g ‘ 𝑅 ) ) |
37 |
24 36
|
eldifsnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑡 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
38 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑅 ∈ Ring ) |
39 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑢 ∈ 𝐵 ) |
40 |
13
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑋 ∈ 𝐵 ) |
41 |
1 8 38 39 40
|
ringcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
42 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
43 |
1 42
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
44 |
14 43
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
45 |
44
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
46 |
4
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
47 |
46
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑅 ∈ Domn ) |
48 |
19
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) |
49 |
48
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) = ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) ) |
50 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) |
51 |
49 50
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) = 𝑡 ) |
52 |
4
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
53 |
52
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → 𝑅 ∈ CRing ) |
54 |
1 8 53 24 39 40
|
crng12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r ‘ 𝑅 ) ( 𝑢 ( .r ‘ 𝑅 ) 𝑋 ) ) = ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
55 |
1 8 42 38 24
|
ringridmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑡 ) |
56 |
51 54 55
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r ‘ 𝑅 ) ( 𝑢 ( .r ‘ 𝑅 ) 𝑋 ) ) = ( 𝑡 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
57 |
1 23 8 37 41 45 47 56
|
domnlcan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
58 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) → 𝑌 ∈ 𝐵 ) |
59 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) → 𝑌 ∥ 𝑡 ) |
60 |
1 3 8
|
dvdsr2 |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑌 ∥ 𝑡 ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) ) |
61 |
60
|
biimpa |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑌 ∥ 𝑡 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) |
62 |
58 59 61
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑡 ) |
63 |
57 62
|
reximddv3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
64 |
1 3 8
|
dvdsr2 |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∥ ( 1r ‘ 𝑅 ) ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) ) |
65 |
64
|
biimpar |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) → 𝑋 ∥ ( 1r ‘ 𝑅 ) ) |
66 |
22 63 65
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) → 𝑋 ∥ ( 1r ‘ 𝑅 ) ) |
67 |
42 3 2 52 5
|
rprmndvdsr1 |
⊢ ( 𝜑 → ¬ 𝑋 ∥ ( 1r ‘ 𝑅 ) ) |
68 |
67
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 ∥ 𝑡 ) → ¬ 𝑋 ∥ ( 1r ‘ 𝑅 ) ) |
69 |
66 68
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → ¬ 𝑌 ∥ 𝑡 ) |
70 |
21 69
|
orcnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌 ∥ 𝑋 ) |
71 |
1 3 8
|
dvdsr |
⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
72 |
6 71
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
73 |
72
|
simprd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) |
74 |
70 73
|
r19.29a |
⊢ ( 𝜑 → 𝑌 ∥ 𝑋 ) |