Metamath Proof Explorer


Theorem rprmasso2

Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmasso.b 𝐵 = ( Base ‘ 𝑅 )
rprmasso.p 𝑃 = ( RPrime ‘ 𝑅 )
rprmasso.d = ( ∥r𝑅 )
rprmasso.r ( 𝜑𝑅 ∈ IDomn )
rprmasso.x ( 𝜑𝑋𝑃 )
rprmasso.1 ( 𝜑𝑋 𝑌 )
rprmasso2.y ( 𝜑𝑌𝑃 )
Assertion rprmasso2 ( 𝜑𝑌 𝑋 )

Proof

Step Hyp Ref Expression
1 rprmasso.b 𝐵 = ( Base ‘ 𝑅 )
2 rprmasso.p 𝑃 = ( RPrime ‘ 𝑅 )
3 rprmasso.d = ( ∥r𝑅 )
4 rprmasso.r ( 𝜑𝑅 ∈ IDomn )
5 rprmasso.x ( 𝜑𝑋𝑃 )
6 rprmasso.1 ( 𝜑𝑋 𝑌 )
7 rprmasso2.y ( 𝜑𝑌𝑃 )
8 eqid ( .r𝑅 ) = ( .r𝑅 )
9 4 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑅 ∈ IDomn )
10 7 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌𝑃 )
11 simplr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑡𝐵 )
12 1 2 4 5 rprmcl ( 𝜑𝑋𝐵 )
13 12 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑋𝐵 )
14 4 idomringd ( 𝜑𝑅 ∈ Ring )
15 1 2 4 7 rprmcl ( 𝜑𝑌𝐵 )
16 1 3 dvdsrid ( ( 𝑅 ∈ Ring ∧ 𝑌𝐵 ) → 𝑌 𝑌 )
17 14 15 16 syl2anc ( 𝜑𝑌 𝑌 )
18 17 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌 𝑌 )
19 simpr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 )
20 18 19 breqtrrd ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌 ( 𝑡 ( .r𝑅 ) 𝑋 ) )
21 1 2 3 8 9 10 11 13 20 rprmdvds ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → ( 𝑌 𝑡𝑌 𝑋 ) )
22 12 ad3antrrr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) → 𝑋𝐵 )
23 eqid ( 0g𝑅 ) = ( 0g𝑅 )
24 11 ad3antrrr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑡𝐵 )
25 simpr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g𝑅 ) ) → 𝑡 = ( 0g𝑅 ) )
26 25 oveq1d ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g𝑅 ) ) → ( 𝑡 ( .r𝑅 ) 𝑋 ) = ( ( 0g𝑅 ) ( .r𝑅 ) 𝑋 ) )
27 simplr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g𝑅 ) ) → ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 )
28 1 8 23 14 12 ringlzd ( 𝜑 → ( ( 0g𝑅 ) ( .r𝑅 ) 𝑋 ) = ( 0g𝑅 ) )
29 28 ad3antrrr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g𝑅 ) ) → ( ( 0g𝑅 ) ( .r𝑅 ) 𝑋 ) = ( 0g𝑅 ) )
30 26 27 29 3eqtr3d ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g𝑅 ) ) → 𝑌 = ( 0g𝑅 ) )
31 2 23 4 7 rprmnz ( 𝜑𝑌 ≠ ( 0g𝑅 ) )
32 31 ad3antrrr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g𝑅 ) ) → 𝑌 ≠ ( 0g𝑅 ) )
33 32 neneqd ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑡 = ( 0g𝑅 ) ) → ¬ 𝑌 = ( 0g𝑅 ) )
34 30 33 pm2.65da ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → ¬ 𝑡 = ( 0g𝑅 ) )
35 34 neqned ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑡 ≠ ( 0g𝑅 ) )
36 35 ad3antrrr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑡 ≠ ( 0g𝑅 ) )
37 24 36 eldifsnd ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑡 ∈ ( 𝐵 ∖ { ( 0g𝑅 ) } ) )
38 14 ad5antr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑅 ∈ Ring )
39 simplr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑢𝐵 )
40 13 ad3antrrr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑋𝐵 )
41 1 8 38 39 40 ringcld ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r𝑅 ) 𝑋 ) ∈ 𝐵 )
42 eqid ( 1r𝑅 ) = ( 1r𝑅 )
43 1 42 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
44 14 43 syl ( 𝜑 → ( 1r𝑅 ) ∈ 𝐵 )
45 44 ad5antr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 1r𝑅 ) ∈ 𝐵 )
46 4 idomdomd ( 𝜑𝑅 ∈ Domn )
47 46 ad5antr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑅 ∈ Domn )
48 19 ad3antrrr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 )
49 48 oveq2d ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r𝑅 ) ( 𝑡 ( .r𝑅 ) 𝑋 ) ) = ( 𝑢 ( .r𝑅 ) 𝑌 ) )
50 simpr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 )
51 49 50 eqtrd ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r𝑅 ) ( 𝑡 ( .r𝑅 ) 𝑋 ) ) = 𝑡 )
52 4 idomcringd ( 𝜑𝑅 ∈ CRing )
53 52 ad5antr ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → 𝑅 ∈ CRing )
54 1 8 53 24 39 40 crng12d ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r𝑅 ) ( 𝑢 ( .r𝑅 ) 𝑋 ) ) = ( 𝑢 ( .r𝑅 ) ( 𝑡 ( .r𝑅 ) 𝑋 ) ) )
55 1 8 42 38 24 ringridmd ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r𝑅 ) ( 1r𝑅 ) ) = 𝑡 )
56 51 54 55 3eqtr4d ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑡 ( .r𝑅 ) ( 𝑢 ( .r𝑅 ) 𝑋 ) ) = ( 𝑡 ( .r𝑅 ) ( 1r𝑅 ) ) )
57 1 23 8 37 41 45 47 56 domnlcan ( ( ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) ∧ 𝑢𝐵 ) ∧ ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) → ( 𝑢 ( .r𝑅 ) 𝑋 ) = ( 1r𝑅 ) )
58 15 ad3antrrr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) → 𝑌𝐵 )
59 simpr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) → 𝑌 𝑡 )
60 1 3 8 dvdsr2 ( 𝑌𝐵 → ( 𝑌 𝑡 ↔ ∃ 𝑢𝐵 ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 ) )
61 60 biimpa ( ( 𝑌𝐵𝑌 𝑡 ) → ∃ 𝑢𝐵 ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 )
62 58 59 61 syl2anc ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) → ∃ 𝑢𝐵 ( 𝑢 ( .r𝑅 ) 𝑌 ) = 𝑡 )
63 57 62 reximddv3 ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) → ∃ 𝑢𝐵 ( 𝑢 ( .r𝑅 ) 𝑋 ) = ( 1r𝑅 ) )
64 1 3 8 dvdsr2 ( 𝑋𝐵 → ( 𝑋 ( 1r𝑅 ) ↔ ∃ 𝑢𝐵 ( 𝑢 ( .r𝑅 ) 𝑋 ) = ( 1r𝑅 ) ) )
65 64 biimpar ( ( 𝑋𝐵 ∧ ∃ 𝑢𝐵 ( 𝑢 ( .r𝑅 ) 𝑋 ) = ( 1r𝑅 ) ) → 𝑋 ( 1r𝑅 ) )
66 22 63 65 syl2anc ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) → 𝑋 ( 1r𝑅 ) )
67 42 3 2 52 5 rprmndvdsr1 ( 𝜑 → ¬ 𝑋 ( 1r𝑅 ) )
68 67 ad3antrrr ( ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) ∧ 𝑌 𝑡 ) → ¬ 𝑋 ( 1r𝑅 ) )
69 66 68 pm2.65da ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → ¬ 𝑌 𝑡 )
70 21 69 orcnd ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) → 𝑌 𝑋 )
71 1 3 8 dvdsr ( 𝑋 𝑌 ↔ ( 𝑋𝐵 ∧ ∃ 𝑡𝐵 ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) )
72 6 71 sylib ( 𝜑 → ( 𝑋𝐵 ∧ ∃ 𝑡𝐵 ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 ) )
73 72 simprd ( 𝜑 → ∃ 𝑡𝐵 ( 𝑡 ( .r𝑅 ) 𝑋 ) = 𝑌 )
74 70 73 r19.29a ( 𝜑𝑌 𝑋 )