Step |
Hyp |
Ref |
Expression |
1 |
|
rprmcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rprmcl.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
3 |
|
rprmcl.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
rprmcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
5 |
4 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( RPrime ‘ 𝑅 ) ) |
6 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
10 |
1 6 7 8 9
|
isrprm |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑋 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑋 ∈ ( 𝐵 ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) → ( 𝑋 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑋 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) ) ) |
11 |
10
|
simprbda |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ ( RPrime ‘ 𝑅 ) ) → 𝑋 ∈ ( 𝐵 ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ) ) |
12 |
11
|
eldifad |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ ( RPrime ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
13 |
3 5 12
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |