Metamath Proof Explorer


Theorem rprmcl

Description: A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmcl.b 𝐵 = ( Base ‘ 𝑅 )
rprmcl.p 𝑃 = ( RPrime ‘ 𝑅 )
rprmcl.r ( 𝜑𝑅𝑉 )
rprmcl.x ( 𝜑𝑋𝑃 )
Assertion rprmcl ( 𝜑𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 rprmcl.b 𝐵 = ( Base ‘ 𝑅 )
2 rprmcl.p 𝑃 = ( RPrime ‘ 𝑅 )
3 rprmcl.r ( 𝜑𝑅𝑉 )
4 rprmcl.x ( 𝜑𝑋𝑃 )
5 4 2 eleqtrdi ( 𝜑𝑋 ∈ ( RPrime ‘ 𝑅 ) )
6 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
7 eqid ( 0g𝑅 ) = ( 0g𝑅 )
8 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
9 eqid ( .r𝑅 ) = ( .r𝑅 )
10 1 6 7 8 9 isrprm ( 𝑅𝑉 → ( 𝑋 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑋 ∈ ( 𝐵 ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g𝑅 ) } ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑋 ( ∥r𝑅 ) ( 𝑥 ( .r𝑅 ) 𝑦 ) → ( 𝑋 ( ∥r𝑅 ) 𝑥𝑋 ( ∥r𝑅 ) 𝑦 ) ) ) ) )
11 10 simprbda ( ( 𝑅𝑉𝑋 ∈ ( RPrime ‘ 𝑅 ) ) → 𝑋 ∈ ( 𝐵 ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g𝑅 ) } ) ) )
12 11 eldifad ( ( 𝑅𝑉𝑋 ∈ ( RPrime ‘ 𝑅 ) ) → 𝑋𝐵 )
13 3 5 12 syl2anc ( 𝜑𝑋𝐵 )