Step |
Hyp |
Ref |
Expression |
1 |
|
rprmdvds.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rprmdvds.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
3 |
|
rprmdvds.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
rprmdvds.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
rprmdvds.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
6 |
|
rprmdvds.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
7 |
|
rprmdvds.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
rprmdvds.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
rprmdvds.1 |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑋 · 𝑌 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑄 ∥ ( 𝑥 · 𝑦 ) ↔ 𝑄 ∥ ( 𝑋 · 𝑦 ) ) ) |
12 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑄 ∥ 𝑥 ↔ 𝑄 ∥ 𝑋 ) ) |
13 |
12
|
orbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦 ) ↔ ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦 ) ) ) |
14 |
11 13
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑄 ∥ ( 𝑥 · 𝑦 ) → ( 𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦 ) ) ↔ ( 𝑄 ∥ ( 𝑋 · 𝑦 ) → ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) |
16 |
15
|
breq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑄 ∥ ( 𝑋 · 𝑦 ) ↔ 𝑄 ∥ ( 𝑋 · 𝑌 ) ) ) |
17 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑄 ∥ 𝑦 ↔ 𝑄 ∥ 𝑌 ) ) |
18 |
17
|
orbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦 ) ↔ ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌 ) ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑄 ∥ ( 𝑋 · 𝑦 ) → ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦 ) ) ↔ ( 𝑄 ∥ ( 𝑋 · 𝑌 ) → ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌 ) ) ) ) |
20 |
6 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑄 ∈ ( RPrime ‘ 𝑅 ) ) |
21 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
23 |
1 21 22 3 4
|
isrprm |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑄 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑄 ∈ ( 𝐵 ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑄 ∥ ( 𝑥 · 𝑦 ) → ( 𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦 ) ) ) ) ) |
24 |
23
|
simplbda |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑄 ∈ ( RPrime ‘ 𝑅 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑄 ∥ ( 𝑥 · 𝑦 ) → ( 𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦 ) ) ) |
25 |
5 20 24
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑄 ∥ ( 𝑥 · 𝑦 ) → ( 𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦 ) ) ) |
26 |
14 19 25 7 8
|
rspc2dv |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑋 · 𝑌 ) → ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌 ) ) ) |
27 |
9 26
|
mpd |
⊢ ( 𝜑 → ( 𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌 ) ) |