Step |
Hyp |
Ref |
Expression |
1 |
|
rprmdvdspow.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rprmdvdspow.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
3 |
|
rprmdvdspow.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
rprmdvdspow.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
5 |
|
rprmdvdspow.o |
⊢ ↑ = ( .g ‘ 𝑀 ) |
6 |
|
rprmdvdspow.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
rprmdvdspow.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
rprmdvdspow.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
9 |
|
rprmdvdspow.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
10 |
|
rprmdvdspow.1 |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑁 ↑ 𝑋 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑖 = 0 → ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) ↔ 𝑄 ∥ ( 0 ↑ 𝑋 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ↔ ( 𝑄 ∥ ( 0 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 ↑ 𝑋 ) = ( 𝑛 ↑ 𝑋 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑖 = 𝑛 → ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) ↔ 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) ) ) |
16 |
15
|
imbi1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ↔ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( 𝑖 ↑ 𝑋 ) = ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) |
18 |
17
|
breq2d |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) ↔ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) ) |
19 |
18
|
imbi1d |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ↔ ( 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑖 = 𝑁 → ( 𝑖 ↑ 𝑋 ) = ( 𝑁 ↑ 𝑋 ) ) |
21 |
20
|
breq2d |
⊢ ( 𝑖 = 𝑁 → ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) ↔ 𝑄 ∥ ( 𝑁 ↑ 𝑋 ) ) ) |
22 |
21
|
imbi1d |
⊢ ( 𝑖 = 𝑁 → ( ( 𝑄 ∥ ( 𝑖 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ↔ ( 𝑄 ∥ ( 𝑁 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ) |
23 |
4 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
24 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
25 |
4 24
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
26 |
23 25 5
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
27 |
7 26
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
28 |
27
|
breq2d |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 0 ↑ 𝑋 ) ↔ 𝑄 ∥ ( 1r ‘ 𝑅 ) ) ) |
29 |
28
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑄 ∥ ( 0 ↑ 𝑋 ) ) → 𝑄 ∥ ( 1r ‘ 𝑅 ) ) |
30 |
24 3 2 6 8
|
rprmndvdsr1 |
⊢ ( 𝜑 → ¬ 𝑄 ∥ ( 1r ‘ 𝑅 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∥ ( 0 ↑ 𝑋 ) ) → ¬ 𝑄 ∥ ( 1r ‘ 𝑅 ) ) |
32 |
29 31
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ 𝑄 ∥ ( 0 ↑ 𝑋 ) ) → 𝑄 ∥ 𝑋 ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 0 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) |
34 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) ∧ 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) ) → ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) |
35 |
34
|
syldbl2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) ∧ 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) ) → 𝑄 ∥ 𝑋 ) |
36 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) ∧ 𝑄 ∥ 𝑋 ) → 𝑄 ∥ 𝑋 ) |
37 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
38 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑅 ∈ CRing ) |
39 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑄 ∈ 𝑃 ) |
40 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
41 |
4
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
42 |
40 41
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
43 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑀 ∈ Mnd ) |
44 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑛 ∈ ℕ0 ) |
45 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
46 |
23 5 43 44 45
|
mulgnn0cld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → ( 𝑛 ↑ 𝑋 ) ∈ 𝐵 ) |
47 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
49 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
50 |
4 37
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
51 |
23 5 50
|
mulgnn0p1 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) ↑ 𝑋 ) = ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
52 |
47 48 49 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ↑ 𝑋 ) = ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
53 |
52
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ↔ 𝑄 ∥ ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
54 |
53
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑄 ∥ ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
55 |
54
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑄 ∥ ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
56 |
1 2 3 37 38 39 46 45 55
|
rprmdvds |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) ∨ 𝑄 ∥ 𝑋 ) ) |
57 |
35 36 56
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) ∧ 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) ) → 𝑄 ∥ 𝑋 ) |
58 |
57
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑄 ∥ ( 𝑛 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) → ( 𝑄 ∥ ( ( 𝑛 + 1 ) ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) |
59 |
13 16 19 22 33 58
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑁 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) |
60 |
9 59
|
mpdan |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑁 ↑ 𝑋 ) → 𝑄 ∥ 𝑋 ) ) |
61 |
10 60
|
mpd |
⊢ ( 𝜑 → 𝑄 ∥ 𝑋 ) |