Metamath Proof Explorer


Theorem rprmdvdsprod

Description: If a prime element Q divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmdvdsprod.b 𝐵 = ( Base ‘ 𝑅 )
rprmdvdsprod.p 𝑃 = ( RPrime ‘ 𝑅 )
rprmdvdsprod.d = ( ∥r𝑅 )
rprmdvdsprod.1 1 = ( 1r𝑅 )
rprmdvdsprod.m 𝑀 = ( mulGrp ‘ 𝑅 )
rprmdvdsprod.r ( 𝜑𝑅 ∈ CRing )
rprmdvdsprod.q ( 𝜑𝑄𝑃 )
rprmdvdsprod.i ( 𝜑𝐼𝑉 )
rprmdvdsprod.2 ( 𝜑𝐹 finSupp 1 )
rprmdvdsprod.f ( 𝜑𝐹 : 𝐼𝐵 )
rprmdvdsprod.3 ( 𝜑𝑄 ( 𝑀 Σg 𝐹 ) )
Assertion rprmdvdsprod ( 𝜑 → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ( 𝐹𝑥 ) )

Proof

Step Hyp Ref Expression
1 rprmdvdsprod.b 𝐵 = ( Base ‘ 𝑅 )
2 rprmdvdsprod.p 𝑃 = ( RPrime ‘ 𝑅 )
3 rprmdvdsprod.d = ( ∥r𝑅 )
4 rprmdvdsprod.1 1 = ( 1r𝑅 )
5 rprmdvdsprod.m 𝑀 = ( mulGrp ‘ 𝑅 )
6 rprmdvdsprod.r ( 𝜑𝑅 ∈ CRing )
7 rprmdvdsprod.q ( 𝜑𝑄𝑃 )
8 rprmdvdsprod.i ( 𝜑𝐼𝑉 )
9 rprmdvdsprod.2 ( 𝜑𝐹 finSupp 1 )
10 rprmdvdsprod.f ( 𝜑𝐹 : 𝐼𝐵 )
11 rprmdvdsprod.3 ( 𝜑𝑄 ( 𝑀 Σg 𝐹 ) )
12 5 1 mgpbas 𝐵 = ( Base ‘ 𝑀 )
13 5 4 ringidval 1 = ( 0g𝑀 )
14 eqid ( .r𝑅 ) = ( .r𝑅 )
15 5 14 mgpplusg ( .r𝑅 ) = ( +g𝑀 )
16 5 crngmgp ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd )
17 6 16 syl ( 𝜑𝑀 ∈ CMnd )
18 disjdifr ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∩ ( 𝐹 supp 1 ) ) = ∅
19 18 a1i ( 𝜑 → ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∩ ( 𝐹 supp 1 ) ) = ∅ )
20 suppssdm ( 𝐹 supp 1 ) ⊆ dom 𝐹
21 20 10 fssdm ( 𝜑 → ( 𝐹 supp 1 ) ⊆ 𝐼 )
22 undifr ( ( 𝐹 supp 1 ) ⊆ 𝐼 ↔ ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) = 𝐼 )
23 21 22 sylib ( 𝜑 → ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) = 𝐼 )
24 23 eqcomd ( 𝜑𝐼 = ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) )
25 12 13 15 17 8 10 9 19 24 gsumsplit ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) ( .r𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) )
26 difssd ( 𝜑 → ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ⊆ 𝐼 )
27 10 26 feqresmpt ( 𝜑 → ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ ( 𝐹𝑧 ) ) )
28 10 ffnd ( 𝜑𝐹 Fn 𝐼 )
29 28 adantr ( ( 𝜑𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝐹 Fn 𝐼 )
30 8 adantr ( ( 𝜑𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝐼𝑉 )
31 6 crngringd ( 𝜑𝑅 ∈ Ring )
32 1 4 ringidcl ( 𝑅 ∈ Ring → 1𝐵 )
33 31 32 syl ( 𝜑1𝐵 )
34 33 adantr ( ( 𝜑𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 1𝐵 )
35 simpr ( ( 𝜑𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) )
36 29 30 34 35 fvdifsupp ( ( 𝜑𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → ( 𝐹𝑧 ) = 1 )
37 36 mpteq2dva ( 𝜑 → ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ ( 𝐹𝑧 ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) )
38 27 37 eqtrd ( 𝜑 → ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) )
39 38 oveq2d ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) )
40 17 cmnmndd ( 𝜑𝑀 ∈ Mnd )
41 8 difexd ( 𝜑 → ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∈ V )
42 13 gsumz ( ( 𝑀 ∈ Mnd ∧ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∈ V ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) = 1 )
43 40 41 42 syl2anc ( 𝜑 → ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) = 1 )
44 39 43 eqtrd ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) = 1 )
45 44 oveq1d ( 𝜑 → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) ( .r𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) = ( 1 ( .r𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) )
46 ovexd ( 𝜑 → ( 𝐹 supp 1 ) ∈ V )
47 10 21 fssresd ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 1 ) ) : ( 𝐹 supp 1 ) ⟶ 𝐵 )
48 9 33 fsuppres ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 1 ) ) finSupp 1 )
49 12 13 17 46 47 48 gsumcl ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ∈ 𝐵 )
50 1 14 4 31 49 ringlidmd ( 𝜑 → ( 1 ( .r𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) )
51 25 45 50 3eqtrd ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) )
52 11 51 breqtrd ( 𝜑𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) )
53 reseq2 ( 𝑏 = ∅ → ( 𝐹𝑏 ) = ( 𝐹 ↾ ∅ ) )
54 53 oveq2d ( 𝑏 = ∅ → ( 𝑀 Σg ( 𝐹𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) )
55 54 breq2d ( 𝑏 = ∅ → ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) ↔ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) )
56 rexeq ( 𝑏 = ∅ → ( ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ↔ ∃ 𝑥 ∈ ∅ 𝑄 ( 𝐹𝑥 ) ) )
57 55 56 imbi12d ( 𝑏 = ∅ → ( ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) → ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ) ↔ ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) → ∃ 𝑥 ∈ ∅ 𝑄 ( 𝐹𝑥 ) ) ) )
58 reseq2 ( 𝑏 = 𝑎 → ( 𝐹𝑏 ) = ( 𝐹𝑎 ) )
59 58 oveq2d ( 𝑏 = 𝑎 → ( 𝑀 Σg ( 𝐹𝑏 ) ) = ( 𝑀 Σg ( 𝐹𝑎 ) ) )
60 59 breq2d ( 𝑏 = 𝑎 → ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) ↔ 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) ) )
61 rexeq ( 𝑏 = 𝑎 → ( ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ↔ ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) )
62 60 61 imbi12d ( 𝑏 = 𝑎 → ( ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) → ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ) ↔ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) )
63 reseq2 ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝐹𝑏 ) = ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) )
64 63 oveq2d ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐹𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) )
65 64 breq2d ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) ↔ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) )
66 rexeq ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ( 𝐹𝑥 ) ) )
67 65 66 imbi12d ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) → ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ) ↔ ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ( 𝐹𝑥 ) ) ) )
68 reseq2 ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝐹𝑏 ) = ( 𝐹 ↾ ( 𝐹 supp 1 ) ) )
69 68 oveq2d ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝑀 Σg ( 𝐹𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) )
70 69 breq2d ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) ↔ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) )
71 rexeq ( 𝑏 = ( 𝐹 supp 1 ) → ( ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ( 𝐹𝑥 ) ) )
72 70 71 imbi12d ( 𝑏 = ( 𝐹 supp 1 ) → ( ( 𝑄 ( 𝑀 Σg ( 𝐹𝑏 ) ) → ∃ 𝑥𝑏 𝑄 ( 𝐹𝑥 ) ) ↔ ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ( 𝐹𝑥 ) ) ) )
73 4 3 2 6 7 rprmndvdsr1 ( 𝜑 → ¬ 𝑄 1 )
74 res0 ( 𝐹 ↾ ∅ ) = ∅
75 74 oveq2i ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ∅ )
76 13 gsum0 ( 𝑀 Σg ∅ ) = 1
77 75 76 eqtri ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = 1
78 77 a1i ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = 1 )
79 78 breq2d ( 𝜑 → ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ↔ 𝑄 1 ) )
80 73 79 mtbird ( 𝜑 → ¬ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) )
81 80 pm2.21d ( 𝜑 → ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) → ∃ 𝑥 ∈ ∅ 𝑄 ( 𝐹𝑥 ) ) )
82 simpllr ( ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) ) → ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) )
83 82 syldbl2 ( ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) )
84 simpr ( ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ( 𝐹𝑦 ) ) → 𝑄 ( 𝐹𝑦 ) )
85 vex 𝑦 ∈ V
86 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
87 86 breq2d ( 𝑥 = 𝑦 → ( 𝑄 ( 𝐹𝑥 ) ↔ 𝑄 ( 𝐹𝑦 ) ) )
88 85 87 rexsn ( ∃ 𝑥 ∈ { 𝑦 } 𝑄 ( 𝐹𝑥 ) ↔ 𝑄 ( 𝐹𝑦 ) )
89 84 88 sylibr ( ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ( 𝐹𝑦 ) ) → ∃ 𝑥 ∈ { 𝑦 } 𝑄 ( 𝐹𝑥 ) )
90 6 ad4antr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑅 ∈ CRing )
91 7 ad4antr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄𝑃 )
92 90 16 syl ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑀 ∈ CMnd )
93 vex 𝑎 ∈ V
94 93 a1i ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ∈ V )
95 10 ad4antr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝐹 : 𝐼𝐵 )
96 simp-4r ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ⊆ ( 𝐹 supp 1 ) )
97 21 ad4antr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 supp 1 ) ⊆ 𝐼 )
98 96 97 sstrd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎𝐼 )
99 95 98 fssresd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹𝑎 ) : 𝑎𝐵 )
100 9 fsuppimpd ( 𝜑 → ( 𝐹 supp 1 ) ∈ Fin )
101 100 ad4antr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 supp 1 ) ∈ Fin )
102 101 96 ssfid ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ∈ Fin )
103 33 ad4antr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 1𝐵 )
104 99 102 103 fdmfifsupp ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹𝑎 ) finSupp 1 )
105 12 13 92 94 99 104 gsumcl ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑀 Σg ( 𝐹𝑎 ) ) ∈ 𝐵 )
106 97 ssdifssd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ⊆ 𝐼 )
107 simpllr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) )
108 106 107 sseldd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑦𝐼 )
109 95 108 ffvelcdmd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹𝑦 ) ∈ 𝐵 )
110 simpr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) )
111 eqid ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 )
112 eqid ( 𝐹𝑦 ) = ( 𝐹𝑦 )
113 40 ad4antr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑀 ∈ Mnd )
114 107 eldifbd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ¬ 𝑦𝑎 )
115 95 fimassd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ 𝐵 )
116 12 111 cntzcmn ( ( 𝑀 ∈ CMnd ∧ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ 𝐵 ) → ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) = 𝐵 )
117 92 115 116 syl2anc ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) = 𝐵 )
118 115 117 sseqtrrd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) )
119 12 15 111 112 95 98 113 102 114 108 109 118 gsumzresunsn ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹𝑎 ) ) ( .r𝑅 ) ( 𝐹𝑦 ) ) )
120 110 119 breqtrd ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ( ( 𝑀 Σg ( 𝐹𝑎 ) ) ( .r𝑅 ) ( 𝐹𝑦 ) ) )
121 1 2 3 14 90 91 105 109 120 rprmdvds ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) ∨ 𝑄 ( 𝐹𝑦 ) ) )
122 83 89 121 orim12da ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑦 } 𝑄 ( 𝐹𝑥 ) ) )
123 rexun ( ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ( 𝐹𝑥 ) ↔ ( ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑦 } 𝑄 ( 𝐹𝑥 ) ) )
124 122 123 sylibr ( ( ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) ) ∧ 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ( 𝐹𝑥 ) )
125 124 exp31 ( ( ( 𝜑𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) → ( ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) → ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ( 𝐹𝑥 ) ) ) )
126 125 anasss ( ( 𝜑 ∧ ( 𝑎 ⊆ ( 𝐹 supp 1 ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ) → ( ( 𝑄 ( 𝑀 Σg ( 𝐹𝑎 ) ) → ∃ 𝑥𝑎 𝑄 ( 𝐹𝑥 ) ) → ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ( 𝐹𝑥 ) ) ) )
127 57 62 67 72 81 126 100 findcard2d ( 𝜑 → ( 𝑄 ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ( 𝐹𝑥 ) ) )
128 52 127 mpd ( 𝜑 → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ( 𝐹𝑥 ) )