Step |
Hyp |
Ref |
Expression |
1 |
|
rprmdvdsprod.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rprmdvdsprod.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
3 |
|
rprmdvdsprod.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
rprmdvdsprod.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
rprmdvdsprod.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
6 |
|
rprmdvdsprod.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
rprmdvdsprod.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
8 |
|
rprmdvdsprod.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
9 |
|
rprmdvdsprod.2 |
⊢ ( 𝜑 → 𝐹 finSupp 1 ) |
10 |
|
rprmdvdsprod.f |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
11 |
|
rprmdvdsprod.3 |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑀 Σg 𝐹 ) ) |
12 |
5 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
13 |
5 4
|
ringidval |
⊢ 1 = ( 0g ‘ 𝑀 ) |
14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
15 |
5 14
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
16 |
5
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
18 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∩ ( 𝐹 supp 1 ) ) = ∅ |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∩ ( 𝐹 supp 1 ) ) = ∅ ) |
20 |
|
suppssdm |
⊢ ( 𝐹 supp 1 ) ⊆ dom 𝐹 |
21 |
20 10
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 1 ) ⊆ 𝐼 ) |
22 |
|
undifr |
⊢ ( ( 𝐹 supp 1 ) ⊆ 𝐼 ↔ ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) = 𝐼 ) |
23 |
21 22
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) = 𝐼 ) |
24 |
23
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) ) |
25 |
12 13 15 17 8 10 9 19 24
|
gsumsplit |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) ) |
26 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ⊆ 𝐼 ) |
27 |
10 26
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
28 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝐹 Fn 𝐼 ) |
30 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝐼 ∈ 𝑉 ) |
31 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
32 |
1 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 1 ∈ 𝐵 ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) |
36 |
29 30 34 35
|
fvdifsupp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → ( 𝐹 ‘ 𝑧 ) = 1 ) |
37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) |
38 |
27 37
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) ) |
40 |
17
|
cmnmndd |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
41 |
8
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∈ V ) |
42 |
13
|
gsumz |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∈ V ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) = 1 ) |
43 |
40 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) = 1 ) |
44 |
39 43
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) = 1 ) |
45 |
44
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) = ( 1 ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) ) |
46 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp 1 ) ∈ V ) |
47 |
10 21
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 1 ) ) : ( 𝐹 supp 1 ) ⟶ 𝐵 ) |
48 |
9 33
|
fsuppres |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 1 ) ) finSupp 1 ) |
49 |
12 13 17 46 47 48
|
gsumcl |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ∈ 𝐵 ) |
50 |
1 14 4 31 49
|
ringlidmd |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
51 |
25 45 50
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
52 |
11 51
|
breqtrd |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
53 |
|
reseq2 |
⊢ ( 𝑏 = ∅ → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ ∅ ) ) |
54 |
53
|
oveq2d |
⊢ ( 𝑏 = ∅ → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
55 |
54
|
breq2d |
⊢ ( 𝑏 = ∅ → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) ) |
56 |
|
rexeq |
⊢ ( 𝑏 = ∅ → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ∅ 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
57 |
55 56
|
imbi12d |
⊢ ( 𝑏 = ∅ → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) → ∃ 𝑥 ∈ ∅ 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
58 |
|
reseq2 |
⊢ ( 𝑏 = 𝑎 → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ 𝑎 ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝑏 = 𝑎 → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) |
60 |
59
|
breq2d |
⊢ ( 𝑏 = 𝑎 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) ) |
61 |
|
rexeq |
⊢ ( 𝑏 = 𝑎 → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
62 |
60 61
|
imbi12d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
63 |
|
reseq2 |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) |
65 |
64
|
breq2d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ) |
66 |
|
rexeq |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
67 |
65 66
|
imbi12d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
68 |
|
reseq2 |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) |
69 |
68
|
oveq2d |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
70 |
69
|
breq2d |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) ) |
71 |
|
rexeq |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
72 |
70 71
|
imbi12d |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
73 |
4 3 2 6 7
|
rprmndvdsr1 |
⊢ ( 𝜑 → ¬ 𝑄 ∥ 1 ) |
74 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
75 |
74
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ∅ ) |
76 |
13
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = 1 |
77 |
75 76
|
eqtri |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = 1 |
78 |
77
|
a1i |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = 1 ) |
79 |
78
|
breq2d |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ↔ 𝑄 ∥ 1 ) ) |
80 |
73 79
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
81 |
80
|
pm2.21d |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) → ∃ 𝑥 ∈ ∅ 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
82 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
83 |
82
|
syldbl2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |
84 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) → 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) |
85 |
|
vex |
⊢ 𝑦 ∈ V |
86 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
87 |
86
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) ) |
88 |
85 87
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) |
89 |
84 88
|
sylibr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |
90 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑅 ∈ CRing ) |
91 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ∈ 𝑃 ) |
92 |
90 16
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑀 ∈ CMnd ) |
93 |
|
vex |
⊢ 𝑎 ∈ V |
94 |
93
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ∈ V ) |
95 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
96 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ⊆ ( 𝐹 supp 1 ) ) |
97 |
21
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 supp 1 ) ⊆ 𝐼 ) |
98 |
96 97
|
sstrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ⊆ 𝐼 ) |
99 |
95 98
|
fssresd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 ↾ 𝑎 ) : 𝑎 ⟶ 𝐵 ) |
100 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 1 ) ∈ Fin ) |
101 |
100
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 supp 1 ) ∈ Fin ) |
102 |
101 96
|
ssfid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ∈ Fin ) |
103 |
33
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 1 ∈ 𝐵 ) |
104 |
99 102 103
|
fdmfifsupp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 ↾ 𝑎 ) finSupp 1 ) |
105 |
12 13 92 94 99 104
|
gsumcl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ∈ 𝐵 ) |
106 |
97
|
ssdifssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ⊆ 𝐼 ) |
107 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) |
108 |
106 107
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑦 ∈ 𝐼 ) |
109 |
95 108
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
110 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) |
111 |
|
eqid |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) |
112 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) |
113 |
40
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑀 ∈ Mnd ) |
114 |
107
|
eldifbd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ¬ 𝑦 ∈ 𝑎 ) |
115 |
95
|
fimassd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ 𝐵 ) |
116 |
12 111
|
cntzcmn |
⊢ ( ( 𝑀 ∈ CMnd ∧ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ 𝐵 ) → ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) = 𝐵 ) |
117 |
92 115 116
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) = 𝐵 ) |
118 |
115 117
|
sseqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) ) |
119 |
12 15 111 112 95 98 113 102 114 108 109 118
|
gsumzresunsn |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
120 |
110 119
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ∥ ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
121 |
1 2 3 14 90 91 105 109 120
|
rprmdvds |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ∨ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) ) |
122 |
83 89 121
|
orim12da |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
123 |
|
rexun |
⊢ ( ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ( ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
124 |
122 123
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |
125 |
124
|
exp31 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
126 |
125
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ ( 𝐹 supp 1 ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
127 |
57 62 67 72 81 126 100
|
findcard2d |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
128 |
52 127
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |