Step |
Hyp |
Ref |
Expression |
1 |
|
rprmirred.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
2 |
|
rprmirred.i |
⊢ 𝐼 = ( Irred ‘ 𝑅 ) |
3 |
|
rprmirred.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
4 |
|
rprmirred.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
5 1 4 3
|
rprmcl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
8 |
1 7 4 3
|
rprmnunit |
⊢ ( 𝜑 → ¬ 𝑄 ∈ ( Unit ‘ 𝑅 ) ) |
9 |
6 8
|
eldifd |
⊢ ( 𝜑 → 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
13 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑅 ∈ IDomn ) |
14 |
13
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑅 ∈ IDomn ) |
15 |
1 10 4 3
|
rprmnz |
⊢ ( 𝜑 → 𝑄 ≠ ( 0g ‘ 𝑅 ) ) |
16 |
15
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑄 ≠ ( 0g ‘ 𝑅 ) ) |
17 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
20 |
19
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
22 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) |
23 |
22
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑄 = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
24 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) |
25 |
5 7 10 11 12 14 16 18 21 23 24
|
rprmirredlem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑦 ∈ ( Unit ‘ 𝑅 ) ) |
26 |
19
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
27 |
26
|
eldifbd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → ¬ 𝑦 ∈ ( Unit ‘ 𝑅 ) ) |
28 |
25 27
|
pm2.21fal |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ) → ⊥ ) |
29 |
13
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑅 ∈ IDomn ) |
30 |
15
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑄 ≠ ( 0g ‘ 𝑅 ) ) |
31 |
19
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
32 |
17
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
34 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) |
35 |
29
|
idomcringd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑅 ∈ CRing ) |
36 |
20
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
37 |
5 11 35 33 36
|
crngcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
38 |
34 37
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑄 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
39 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) |
40 |
5 7 10 11 12 29 30 31 33 38 39
|
rprmirredlem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
41 |
17
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
42 |
41
|
eldifbd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → ¬ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
43 |
40 42
|
pm2.21fal |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) ∧ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) → ⊥ ) |
44 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑄 ∈ 𝑃 ) |
45 |
4
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
46 |
5 12
|
dvdsrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ ( Base ‘ 𝑅 ) ) → 𝑄 ( ∥r ‘ 𝑅 ) 𝑄 ) |
47 |
45 6 46
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ( ∥r ‘ 𝑅 ) 𝑄 ) |
48 |
47
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑄 ( ∥r ‘ 𝑅 ) 𝑄 ) |
49 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) |
50 |
48 49
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → 𝑄 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
51 |
5 1 12 11 13 44 32 20 50
|
rprmdvds |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → ( 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) ) |
52 |
28 43 51
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) → ⊥ ) |
53 |
52
|
inegd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑄 ) |
54 |
53
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑄 ) |
55 |
54
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑄 ) |
56 |
55
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑄 ) |
57 |
|
eqid |
⊢ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) |
58 |
5 7 2 57 11
|
isirred |
⊢ ( 𝑄 ∈ 𝐼 ↔ ( 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑄 ) ) |
59 |
9 56 58
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ 𝐼 ) |