Step |
Hyp |
Ref |
Expression |
1 |
|
rprmirredlem.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rprmirredlem.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
3 |
|
rprmirredlem.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
rprmirredlem.4 |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
rprmirredlem.5 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
6 |
|
rprmirredlem.6 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
7 |
|
rprmirredlem.7 |
⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
8 |
|
rprmirredlem.8 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) ) |
9 |
|
rprmirredlem.9 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
|
rprmirredlem.10 |
⊢ ( 𝜑 → 𝑄 = ( 𝑋 · 𝑌 ) ) |
11 |
|
rprmirredlem.11 |
⊢ ( 𝜑 → 𝑄 ∥ 𝑋 ) |
12 |
6
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ CRing ) |
14 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
15 |
1 5 4
|
dvdsr |
⊢ ( 𝑄 ∥ 𝑋 ↔ ( 𝑄 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) ) |
16 |
11 15
|
sylib |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 ∈ 𝐵 ) |
19 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 ≠ 0 ) |
20 |
18 19
|
eldifsnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 ∈ ( 𝐵 ∖ { 0 } ) ) |
21 |
13
|
crngringd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ Ring ) |
22 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑡 ∈ 𝐵 ) |
23 |
1 4 21 22 14
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑌 ) ∈ 𝐵 ) |
24 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
25 |
1 24
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
26 |
21 25
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
27 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ IDomn ) |
28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑄 ) = 𝑋 ) |
29 |
28
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑄 ) · 𝑌 ) = ( 𝑋 · 𝑌 ) ) |
30 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 = ( 𝑋 · 𝑌 ) ) |
31 |
29 30
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑄 ) · 𝑌 ) = 𝑄 ) |
32 |
1 4 13 22 14 18
|
cringmul32d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑌 ) · 𝑄 ) = ( ( 𝑡 · 𝑄 ) · 𝑌 ) ) |
33 |
1 4 24 21 18
|
ringlidmd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 1r ‘ 𝑅 ) · 𝑄 ) = 𝑄 ) |
34 |
31 32 33
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑌 ) · 𝑄 ) = ( ( 1r ‘ 𝑅 ) · 𝑄 ) ) |
35 |
1 3 4 20 23 26 27 34
|
idomrcan |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
36 |
16
|
simprd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) |
37 |
35 36
|
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
39 |
1 5 4
|
dvdsr |
⊢ ( 𝑌 ∥ ( 1r ‘ 𝑅 ) ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) ) |
40 |
14 38 39
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌 ∥ ( 1r ‘ 𝑅 ) ) |
41 |
2 24 5
|
crngunit |
⊢ ( 𝑅 ∈ CRing → ( 𝑌 ∈ 𝑈 ↔ 𝑌 ∥ ( 1r ‘ 𝑅 ) ) ) |
42 |
41
|
biimpar |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ ( 1r ‘ 𝑅 ) ) → 𝑌 ∈ 𝑈 ) |
43 |
13 40 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌 ∈ 𝑈 ) |
44 |
43 36
|
r19.29a |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |