Metamath Proof Explorer


Theorem rprmirredlem

Description: Lemma for rprmirred . (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmirredlem.1 𝐵 = ( Base ‘ 𝑅 )
rprmirredlem.2 𝑈 = ( Unit ‘ 𝑅 )
rprmirredlem.3 0 = ( 0g𝑅 )
rprmirredlem.4 · = ( .r𝑅 )
rprmirredlem.5 = ( ∥r𝑅 )
rprmirredlem.6 ( 𝜑𝑅 ∈ IDomn )
rprmirredlem.7 ( 𝜑𝑄0 )
rprmirredlem.8 ( 𝜑𝑋 ∈ ( 𝐵𝑈 ) )
rprmirredlem.9 ( 𝜑𝑌𝐵 )
rprmirredlem.10 ( 𝜑𝑄 = ( 𝑋 · 𝑌 ) )
rprmirredlem.11 ( 𝜑𝑄 𝑋 )
Assertion rprmirredlem ( 𝜑𝑌𝑈 )

Proof

Step Hyp Ref Expression
1 rprmirredlem.1 𝐵 = ( Base ‘ 𝑅 )
2 rprmirredlem.2 𝑈 = ( Unit ‘ 𝑅 )
3 rprmirredlem.3 0 = ( 0g𝑅 )
4 rprmirredlem.4 · = ( .r𝑅 )
5 rprmirredlem.5 = ( ∥r𝑅 )
6 rprmirredlem.6 ( 𝜑𝑅 ∈ IDomn )
7 rprmirredlem.7 ( 𝜑𝑄0 )
8 rprmirredlem.8 ( 𝜑𝑋 ∈ ( 𝐵𝑈 ) )
9 rprmirredlem.9 ( 𝜑𝑌𝐵 )
10 rprmirredlem.10 ( 𝜑𝑄 = ( 𝑋 · 𝑌 ) )
11 rprmirredlem.11 ( 𝜑𝑄 𝑋 )
12 6 idomcringd ( 𝜑𝑅 ∈ CRing )
13 12 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ CRing )
14 9 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌𝐵 )
15 1 5 4 dvdsr ( 𝑄 𝑋 ↔ ( 𝑄𝐵 ∧ ∃ 𝑡𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) )
16 11 15 sylib ( 𝜑 → ( 𝑄𝐵 ∧ ∃ 𝑡𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) )
17 16 simpld ( 𝜑𝑄𝐵 )
18 17 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄𝐵 )
19 7 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄0 )
20 18 19 eldifsnd ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 ∈ ( 𝐵 ∖ { 0 } ) )
21 13 crngringd ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ Ring )
22 simplr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑡𝐵 )
23 1 4 21 22 14 ringcld ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑌 ) ∈ 𝐵 )
24 eqid ( 1r𝑅 ) = ( 1r𝑅 )
25 1 24 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
26 21 25 syl ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 1r𝑅 ) ∈ 𝐵 )
27 6 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ IDomn )
28 simpr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑄 ) = 𝑋 )
29 28 oveq1d ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑄 ) · 𝑌 ) = ( 𝑋 · 𝑌 ) )
30 10 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 = ( 𝑋 · 𝑌 ) )
31 29 30 eqtr4d ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑄 ) · 𝑌 ) = 𝑄 )
32 1 4 13 22 14 18 cringmul32d ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑌 ) · 𝑄 ) = ( ( 𝑡 · 𝑄 ) · 𝑌 ) )
33 1 4 24 21 18 ringlidmd ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 1r𝑅 ) · 𝑄 ) = 𝑄 )
34 31 32 33 3eqtr4d ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑌 ) · 𝑄 ) = ( ( 1r𝑅 ) · 𝑄 ) )
35 1 3 4 20 23 26 27 34 idomrcan ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑌 ) = ( 1r𝑅 ) )
36 16 simprd ( 𝜑 → ∃ 𝑡𝐵 ( 𝑡 · 𝑄 ) = 𝑋 )
37 35 36 reximddv3 ( 𝜑 → ∃ 𝑡𝐵 ( 𝑡 · 𝑌 ) = ( 1r𝑅 ) )
38 37 ad2antrr ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ∃ 𝑡𝐵 ( 𝑡 · 𝑌 ) = ( 1r𝑅 ) )
39 1 5 4 dvdsr ( 𝑌 ( 1r𝑅 ) ↔ ( 𝑌𝐵 ∧ ∃ 𝑡𝐵 ( 𝑡 · 𝑌 ) = ( 1r𝑅 ) ) )
40 14 38 39 sylanbrc ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌 ( 1r𝑅 ) )
41 2 24 5 crngunit ( 𝑅 ∈ CRing → ( 𝑌𝑈𝑌 ( 1r𝑅 ) ) )
42 41 biimpar ( ( 𝑅 ∈ CRing ∧ 𝑌 ( 1r𝑅 ) ) → 𝑌𝑈 )
43 13 40 42 syl2anc ( ( ( 𝜑𝑡𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌𝑈 )
44 43 36 r19.29a ( 𝜑𝑌𝑈 )