Metamath Proof Explorer


Theorem rprmndvdsr1

Description: A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmndvdsr1.1 1 = ( 1r𝑅 )
rprmndvdsr1.2 = ( ∥r𝑅 )
rprmndvdsr1.3 𝑃 = ( RPrime ‘ 𝑅 )
rprmndvdsr1.4 ( 𝜑𝑅 ∈ CRing )
rprmndvdsr1.5 ( 𝜑𝑄𝑃 )
Assertion rprmndvdsr1 ( 𝜑 → ¬ 𝑄 1 )

Proof

Step Hyp Ref Expression
1 rprmndvdsr1.1 1 = ( 1r𝑅 )
2 rprmndvdsr1.2 = ( ∥r𝑅 )
3 rprmndvdsr1.3 𝑃 = ( RPrime ‘ 𝑅 )
4 rprmndvdsr1.4 ( 𝜑𝑅 ∈ CRing )
5 rprmndvdsr1.5 ( 𝜑𝑄𝑃 )
6 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
7 3 6 4 5 rprmnunit ( 𝜑 → ¬ 𝑄 ∈ ( Unit ‘ 𝑅 ) )
8 6 1 2 crngunit ( 𝑅 ∈ CRing → ( 𝑄 ∈ ( Unit ‘ 𝑅 ) ↔ 𝑄 1 ) )
9 4 8 syl ( 𝜑 → ( 𝑄 ∈ ( Unit ‘ 𝑅 ) ↔ 𝑄 1 ) )
10 7 9 mtbid ( 𝜑 → ¬ 𝑄 1 )