Metamath Proof Explorer


Theorem rprmnunit

Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmdvds.2 𝑃 = ( RPrime ‘ 𝑅 )
rprmdvds.3 𝑈 = ( Unit ‘ 𝑅 )
rprmdvds.5 ( 𝜑𝑅𝑉 )
rprmdvds.6 ( 𝜑𝑄𝑃 )
Assertion rprmnunit ( 𝜑 → ¬ 𝑄𝑈 )

Proof

Step Hyp Ref Expression
1 rprmdvds.2 𝑃 = ( RPrime ‘ 𝑅 )
2 rprmdvds.3 𝑈 = ( Unit ‘ 𝑅 )
3 rprmdvds.5 ( 𝜑𝑅𝑉 )
4 rprmdvds.6 ( 𝜑𝑄𝑃 )
5 eqidd ( 𝜑 → ( 𝑈 ∪ { ( 0g𝑅 ) } ) = ( 𝑈 ∪ { ( 0g𝑅 ) } ) )
6 4 1 eleqtrdi ( 𝜑𝑄 ∈ ( RPrime ‘ 𝑅 ) )
7 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
8 eqid ( 0g𝑅 ) = ( 0g𝑅 )
9 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 7 2 8 9 10 isrprm ( 𝑅𝑉 → ( 𝑄 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( 𝑈 ∪ { ( 0g𝑅 ) } ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑄 ( ∥r𝑅 ) ( 𝑥 ( .r𝑅 ) 𝑦 ) → ( 𝑄 ( ∥r𝑅 ) 𝑥𝑄 ( ∥r𝑅 ) 𝑦 ) ) ) ) )
12 11 simprbda ( ( 𝑅𝑉𝑄 ∈ ( RPrime ‘ 𝑅 ) ) → 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( 𝑈 ∪ { ( 0g𝑅 ) } ) ) )
13 3 6 12 syl2anc ( 𝜑𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( 𝑈 ∪ { ( 0g𝑅 ) } ) ) )
14 13 eldifbd ( 𝜑 → ¬ 𝑄 ∈ ( 𝑈 ∪ { ( 0g𝑅 ) } ) )
15 nelun ( ( 𝑈 ∪ { ( 0g𝑅 ) } ) = ( 𝑈 ∪ { ( 0g𝑅 ) } ) → ( ¬ 𝑄 ∈ ( 𝑈 ∪ { ( 0g𝑅 ) } ) ↔ ( ¬ 𝑄𝑈 ∧ ¬ 𝑄 ∈ { ( 0g𝑅 ) } ) ) )
16 15 simprbda ( ( ( 𝑈 ∪ { ( 0g𝑅 ) } ) = ( 𝑈 ∪ { ( 0g𝑅 ) } ) ∧ ¬ 𝑄 ∈ ( 𝑈 ∪ { ( 0g𝑅 ) } ) ) → ¬ 𝑄𝑈 )
17 5 14 16 syl2anc ( 𝜑 → ¬ 𝑄𝑈 )