Metamath Proof Explorer


Theorem rprmnz

Description: A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmnz.p 𝑃 = ( RPrime ‘ 𝑅 )
rprmnz.0 0 = ( 0g𝑅 )
rprmnz.r ( 𝜑𝑅𝑉 )
rprmnz.q ( 𝜑𝑄𝑃 )
Assertion rprmnz ( 𝜑𝑄0 )

Proof

Step Hyp Ref Expression
1 rprmnz.p 𝑃 = ( RPrime ‘ 𝑅 )
2 rprmnz.0 0 = ( 0g𝑅 )
3 rprmnz.r ( 𝜑𝑅𝑉 )
4 rprmnz.q ( 𝜑𝑄𝑃 )
5 eqidd ( 𝜑 → ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) = ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) )
6 4 1 eleqtrdi ( 𝜑𝑄 ∈ ( RPrime ‘ 𝑅 ) )
7 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
8 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
9 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 7 8 2 9 10 isrprm ( 𝑅𝑉 → ( 𝑄 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑄 ( ∥r𝑅 ) ( 𝑥 ( .r𝑅 ) 𝑦 ) → ( 𝑄 ( ∥r𝑅 ) 𝑥𝑄 ( ∥r𝑅 ) 𝑦 ) ) ) ) )
12 11 simprbda ( ( 𝑅𝑉𝑄 ∈ ( RPrime ‘ 𝑅 ) ) → 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) )
13 3 6 12 syl2anc ( 𝜑𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) )
14 13 eldifbd ( 𝜑 → ¬ 𝑄 ∈ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) )
15 nelun ( ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) = ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) → ( ¬ 𝑄 ∈ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ↔ ( ¬ 𝑄 ∈ ( Unit ‘ 𝑅 ) ∧ ¬ 𝑄 ∈ { 0 } ) ) )
16 15 simplbda ( ( ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) = ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ∧ ¬ 𝑄 ∈ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) → ¬ 𝑄 ∈ { 0 } )
17 5 14 16 syl2anc ( 𝜑 → ¬ 𝑄 ∈ { 0 } )
18 elsng ( 𝑄𝑃 → ( 𝑄 ∈ { 0 } ↔ 𝑄 = 0 ) )
19 4 18 syl ( 𝜑 → ( 𝑄 ∈ { 0 } ↔ 𝑄 = 0 ) )
20 19 necon3bbid ( 𝜑 → ( ¬ 𝑄 ∈ { 0 } ↔ 𝑄0 ) )
21 17 20 mpbid ( 𝜑𝑄0 )