| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rplpwr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐵  gcd  𝐴 )  =  1  →  ( ( 𝐵 ↑ 𝑁 )  gcd  𝐴 )  =  1 ) ) | 
						
							| 2 | 1 | 3com12 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐵  gcd  𝐴 )  =  1  →  ( ( 𝐵 ↑ 𝑁 )  gcd  𝐴 )  =  1 ) ) | 
						
							| 3 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 4 |  | nnz | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℤ ) | 
						
							| 5 |  | gcdcom | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  =  ( 𝐵  gcd  𝐴 ) ) | 
						
							| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  =  ( 𝐵  gcd  𝐴 ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  =  ( 𝐵  gcd  𝐴 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  =  1  ↔  ( 𝐵  gcd  𝐴 )  =  1 ) ) | 
						
							| 9 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝐴  ∈  ℕ ) | 
						
							| 10 | 9 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝐵  ∈  ℕ ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 13 | 12 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 14 | 11 13 | nnexpcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 15 | 14 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 16 | 10 15 | gcdcomd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  gcd  ( 𝐵 ↑ 𝑁 ) )  =  ( ( 𝐵 ↑ 𝑁 )  gcd  𝐴 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴  gcd  ( 𝐵 ↑ 𝑁 ) )  =  1  ↔  ( ( 𝐵 ↑ 𝑁 )  gcd  𝐴 )  =  1 ) ) | 
						
							| 18 | 2 8 17 | 3imtr4d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  =  1  →  ( 𝐴  gcd  ( 𝐵 ↑ 𝑁 ) )  =  1 ) ) |