Metamath Proof Explorer


Theorem rpsqrtcld

Description: The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis sqrgt0d.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rpsqrtcld ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 sqrgt0d.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpsqrtcl ( 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ ℝ+ )
3 1 2 syl ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℝ+ )