| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 2 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 3 |
1 2
|
sstri |
⊢ ℝ+ ⊆ ℂ |
| 4 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
| 5 |
|
fdm |
⊢ ( √ : ℂ ⟶ ℂ → dom √ = ℂ ) |
| 6 |
4 5
|
ax-mp |
⊢ dom √ = ℂ |
| 7 |
3 6
|
sseqtrri |
⊢ ℝ+ ⊆ dom √ |
| 8 |
7
|
sseli |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ dom √ ) |
| 9 |
|
rpsqrtcl |
⊢ ( 𝑥 ∈ ℝ+ → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
| 10 |
8 9
|
jca |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
| 12 |
|
ffun |
⊢ ( √ : ℂ ⟶ ℂ → Fun √ ) |
| 13 |
4 12
|
ax-mp |
⊢ Fun √ |
| 14 |
|
ffvresb |
⊢ ( Fun √ → ( ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) ) |
| 16 |
11 15
|
mpbir |
⊢ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ |
| 17 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 18 |
|
ioossico |
⊢ ( 0 (,) +∞ ) ⊆ ( 0 [,) +∞ ) |
| 19 |
17 18
|
eqsstrri |
⊢ ℝ+ ⊆ ( 0 [,) +∞ ) |
| 20 |
|
resabs1 |
⊢ ( ℝ+ ⊆ ( 0 [,) +∞ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) = ( √ ↾ ℝ+ ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) = ( √ ↾ ℝ+ ) |
| 22 |
|
resqrtcn |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) |
| 23 |
|
rescncf |
⊢ ( ℝ+ ⊆ ( 0 [,) +∞ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ) ) |
| 24 |
19 22 23
|
mp2 |
⊢ ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |
| 25 |
21 24
|
eqeltrri |
⊢ ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |
| 26 |
|
cncfcdm |
⊢ ( ( ℝ+ ⊆ ℂ ∧ ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ) → ( ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ+ ) ↔ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ) ) |
| 27 |
3 25 26
|
mp2an |
⊢ ( ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ+ ) ↔ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ) |
| 28 |
16 27
|
mpbir |
⊢ ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ+ ) |