Step |
Hyp |
Ref |
Expression |
1 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
2 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
3 |
1 2
|
sstri |
⊢ ℝ+ ⊆ ℂ |
4 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
5 |
|
fdm |
⊢ ( √ : ℂ ⟶ ℂ → dom √ = ℂ ) |
6 |
4 5
|
ax-mp |
⊢ dom √ = ℂ |
7 |
3 6
|
sseqtrri |
⊢ ℝ+ ⊆ dom √ |
8 |
7
|
sseli |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ dom √ ) |
9 |
|
rpsqrtcl |
⊢ ( 𝑥 ∈ ℝ+ → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
10 |
8 9
|
jca |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) ) |
11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
12 |
|
ffun |
⊢ ( √ : ℂ ⟶ ℂ → Fun √ ) |
13 |
4 12
|
ax-mp |
⊢ Fun √ |
14 |
|
ffvresb |
⊢ ( Fun √ → ( ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) ) ) |
15 |
13 14
|
ax-mp |
⊢ ( ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom √ ∧ ( √ ‘ 𝑥 ) ∈ ℝ+ ) ) |
16 |
11 15
|
mpbir |
⊢ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ |
17 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
18 |
|
ioossico |
⊢ ( 0 (,) +∞ ) ⊆ ( 0 [,) +∞ ) |
19 |
17 18
|
eqsstrri |
⊢ ℝ+ ⊆ ( 0 [,) +∞ ) |
20 |
|
resabs1 |
⊢ ( ℝ+ ⊆ ( 0 [,) +∞ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) = ( √ ↾ ℝ+ ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) = ( √ ↾ ℝ+ ) |
22 |
|
resqrtcn |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) |
23 |
|
rescncf |
⊢ ( ℝ+ ⊆ ( 0 [,) +∞ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) → ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ) ) |
24 |
19 22 23
|
mp2 |
⊢ ( ( √ ↾ ( 0 [,) +∞ ) ) ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |
25 |
21 24
|
eqeltrri |
⊢ ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |
26 |
|
cncffvrn |
⊢ ( ( ℝ+ ⊆ ℂ ∧ ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ) → ( ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ+ ) ↔ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ) ) |
27 |
3 25 26
|
mp2an |
⊢ ( ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ+ ) ↔ ( √ ↾ ℝ+ ) : ℝ+ ⟶ ℝ+ ) |
28 |
16 27
|
mpbir |
⊢ ( √ ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ+ ) |