Metamath Proof Explorer


Theorem rpxrd

Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rpxrd ( 𝜑𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 1 rpred ( 𝜑𝐴 ∈ ℝ )
3 2 rexrd ( 𝜑𝐴 ∈ ℝ* )