Metamath Proof Explorer


Theorem rr19.28v

Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. We don't need the nonempty class condition of r19.28zv when there is an outer quantifier. (Contributed by NM, 29-Oct-2012)

Ref Expression
Assertion rr19.28v ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜑𝜓 ) → 𝜑 )
2 1 ralimi ( ∀ 𝑦𝐴 ( 𝜑𝜓 ) → ∀ 𝑦𝐴 𝜑 )
3 biidd ( 𝑦 = 𝑥 → ( 𝜑𝜑 ) )
4 3 rspcv ( 𝑥𝐴 → ( ∀ 𝑦𝐴 𝜑𝜑 ) )
5 2 4 syl5 ( 𝑥𝐴 → ( ∀ 𝑦𝐴 ( 𝜑𝜓 ) → 𝜑 ) )
6 simpr ( ( 𝜑𝜓 ) → 𝜓 )
7 6 ralimi ( ∀ 𝑦𝐴 ( 𝜑𝜓 ) → ∀ 𝑦𝐴 𝜓 )
8 5 7 jca2 ( 𝑥𝐴 → ( ∀ 𝑦𝐴 ( 𝜑𝜓 ) → ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
9 8 ralimia ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) → ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) )
10 r19.28v ( ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) → ∀ 𝑦𝐴 ( 𝜑𝜓 ) )
11 10 ralimi ( ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) )
12 9 11 impbii ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) )