Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
2 |
1
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
3 |
|
biidd |
⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) |
4 |
3
|
rspcv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝜑 → 𝜑 ) ) |
5 |
2 4
|
syl5 |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) |
7 |
6
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑦 ∈ 𝐴 𝜓 ) |
8 |
5 7
|
jca2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
9 |
8
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |
10 |
|
r19.28v |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) → ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
12 |
9 11
|
impbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |