Metamath Proof Explorer


Theorem rr19.3v

Description: Restricted quantifier version of Theorem 19.3 of Margaris p. 89. We don't need the nonempty class condition of r19.3rzv when there is an outer quantifier. (Contributed by NM, 25-Oct-2012)

Ref Expression
Assertion rr19.3v ( ∀ 𝑥𝐴𝑦𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 biidd ( 𝑦 = 𝑥 → ( 𝜑𝜑 ) )
2 1 rspcv ( 𝑥𝐴 → ( ∀ 𝑦𝐴 𝜑𝜑 ) )
3 2 ralimia ( ∀ 𝑥𝐴𝑦𝐴 𝜑 → ∀ 𝑥𝐴 𝜑 )
4 ax-1 ( 𝜑 → ( 𝑦𝐴𝜑 ) )
5 4 ralrimiv ( 𝜑 → ∀ 𝑦𝐴 𝜑 )
6 5 ralimi ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴𝑦𝐴 𝜑 )
7 3 6 impbii ( ∀ 𝑥𝐴𝑦𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )