Metamath Proof Explorer


Theorem rrgeq0

Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses rrgval.e 𝐸 = ( RLReg ‘ 𝑅 )
rrgval.b 𝐵 = ( Base ‘ 𝑅 )
rrgval.t · = ( .r𝑅 )
rrgval.z 0 = ( 0g𝑅 )
Assertion rrgeq0 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )

Proof

Step Hyp Ref Expression
1 rrgval.e 𝐸 = ( RLReg ‘ 𝑅 )
2 rrgval.b 𝐵 = ( Base ‘ 𝑅 )
3 rrgval.t · = ( .r𝑅 )
4 rrgval.z 0 = ( 0g𝑅 )
5 1 2 3 4 rrgeq0i ( ( 𝑋𝐸𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )
6 5 3adant1 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )
7 simp1 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → 𝑅 ∈ Ring )
8 1 2 3 4 rrgval 𝐸 = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( ( 𝑥 · 𝑦 ) = 0𝑦 = 0 ) }
9 8 ssrab3 𝐸𝐵
10 simp2 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → 𝑋𝐸 )
11 9 10 sseldi ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → 𝑋𝐵 )
12 2 3 4 ringrz ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑋 · 0 ) = 0 )
13 7 11 12 syl2anc ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → ( 𝑋 · 0 ) = 0 )
14 oveq2 ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) )
15 14 eqeq1d ( 𝑌 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 · 0 ) = 0 ) )
16 13 15 syl5ibrcom ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) )
17 6 16 impbid ( ( 𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )