Metamath Proof Explorer


Theorem rrgeq0i

Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgval.e 𝐸 = ( RLReg ‘ 𝑅 )
rrgval.b 𝐵 = ( Base ‘ 𝑅 )
rrgval.t · = ( .r𝑅 )
rrgval.z 0 = ( 0g𝑅 )
Assertion rrgeq0i ( ( 𝑋𝐸𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )

Proof

Step Hyp Ref Expression
1 rrgval.e 𝐸 = ( RLReg ‘ 𝑅 )
2 rrgval.b 𝐵 = ( Base ‘ 𝑅 )
3 rrgval.t · = ( .r𝑅 )
4 rrgval.z 0 = ( 0g𝑅 )
5 1 2 3 4 isrrg ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) ) )
6 5 simprbi ( 𝑋𝐸 → ∀ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) )
7 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) )
8 7 eqeq1d ( 𝑦 = 𝑌 → ( ( 𝑋 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑌 ) = 0 ) )
9 eqeq1 ( 𝑦 = 𝑌 → ( 𝑦 = 0𝑌 = 0 ) )
10 8 9 imbi12d ( 𝑦 = 𝑌 → ( ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) ↔ ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) ) )
11 10 rspcv ( 𝑌𝐵 → ( ∀ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) ) )
12 6 11 mpan9 ( ( 𝑋𝐸𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )