Step |
Hyp |
Ref |
Expression |
1 |
|
rrgval.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
2 |
|
rrgval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
rrgval.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
rrgval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
1 2 3 4
|
isrrg |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑋 ∈ 𝐸 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑌 ) = 0 ) ) |
9 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 = 0 ↔ 𝑌 = 0 ) ) |
10 |
8 9
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
11 |
10
|
rspcv |
⊢ ( 𝑌 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
12 |
6 11
|
mpan9 |
⊢ ( ( 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) |