Metamath Proof Explorer


Theorem rrgss

Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgss.e 𝐸 = ( RLReg ‘ 𝑅 )
rrgss.b 𝐵 = ( Base ‘ 𝑅 )
Assertion rrgss 𝐸𝐵

Proof

Step Hyp Ref Expression
1 rrgss.e 𝐸 = ( RLReg ‘ 𝑅 )
2 rrgss.b 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( .r𝑅 ) = ( .r𝑅 )
4 eqid ( 0g𝑅 ) = ( 0g𝑅 )
5 1 2 3 4 rrgval 𝐸 = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) → 𝑦 = ( 0g𝑅 ) ) }
6 5 ssrab3 𝐸𝐵