Step |
Hyp |
Ref |
Expression |
1 |
|
rrgsubm.1 |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
2 |
|
rrgsubm.2 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
3 |
|
rrgsubm.3 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
1 6
|
rrgss |
⊢ 𝐸 ⊆ ( Base ‘ 𝑅 ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐸 ⊆ ( Base ‘ 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
10 |
9 1 3
|
1rrg |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐸 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑅 ∈ Ring ) |
13 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑥 ∈ 𝐸 ) |
14 |
7 13
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑦 ∈ 𝐸 ) |
16 |
7 15
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
17 |
6 11 12 14 16
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
18 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ 𝐸 ) |
19 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
20 |
13
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝐸 ) |
21 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
22 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
23 |
6 11 21 22 19
|
ringcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
14
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
25 |
6 11 21 24 22 19
|
ringassd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
26 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
27 |
25 26
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( 0g ‘ 𝑅 ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
29 |
1 6 11 28
|
rrgeq0i |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( 0g ‘ 𝑅 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( 𝑥 ∈ 𝐸 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
31 |
20 23 27 30
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
32 |
1 6 11 28
|
rrgeq0i |
⊢ ( ( 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑧 = ( 0g ‘ 𝑅 ) ) |
34 |
18 19 31 33
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑧 = ( 0g ‘ 𝑅 ) ) |
35 |
34
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
36 |
35
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
37 |
1 6 11 28
|
isrrg |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
38 |
17 36 37
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) |
39 |
38
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) |
40 |
39
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) |
41 |
2 6
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
42 |
2 9
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
43 |
2 11
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
44 |
41 42 43
|
issubm |
⊢ ( 𝑀 ∈ Mnd → ( 𝐸 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐸 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐸 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) ) ) |
45 |
44
|
biimpar |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝐸 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐸 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) ) → 𝐸 ∈ ( SubMnd ‘ 𝑀 ) ) |
46 |
5 8 10 40 45
|
syl13anc |
⊢ ( 𝜑 → 𝐸 ∈ ( SubMnd ‘ 𝑀 ) ) |