Metamath Proof Explorer


Theorem rrgsubm

Description: The left regular elements of a ring form a submonoid of the multiplicative group. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses rrgsubm.1 𝐸 = ( RLReg ‘ 𝑅 )
rrgsubm.2 𝑀 = ( mulGrp ‘ 𝑅 )
rrgsubm.3 ( 𝜑𝑅 ∈ Ring )
Assertion rrgsubm ( 𝜑𝐸 ∈ ( SubMnd ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 rrgsubm.1 𝐸 = ( RLReg ‘ 𝑅 )
2 rrgsubm.2 𝑀 = ( mulGrp ‘ 𝑅 )
3 rrgsubm.3 ( 𝜑𝑅 ∈ Ring )
4 2 ringmgp ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd )
5 3 4 syl ( 𝜑𝑀 ∈ Mnd )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 1 6 rrgss 𝐸 ⊆ ( Base ‘ 𝑅 )
8 7 a1i ( 𝜑𝐸 ⊆ ( Base ‘ 𝑅 ) )
9 eqid ( 1r𝑅 ) = ( 1r𝑅 )
10 9 1 3 1rrg ( 𝜑 → ( 1r𝑅 ) ∈ 𝐸 )
11 eqid ( .r𝑅 ) = ( .r𝑅 )
12 3 ad2antrr ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → 𝑅 ∈ Ring )
13 simplr ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → 𝑥𝐸 )
14 7 13 sselid ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
15 simpr ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → 𝑦𝐸 )
16 7 15 sselid ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) )
17 6 11 12 14 16 ringcld ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
18 15 ad2antrr ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑦𝐸 )
19 simplr ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) )
20 13 ad2antrr ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑥𝐸 )
21 12 ad2antrr ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑅 ∈ Ring )
22 16 ad2antrr ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) )
23 6 11 21 22 19 ringcld ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) )
24 14 ad2antrr ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
25 6 11 21 24 22 19 ringassd ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 𝑥 ( .r𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑧 ) ) )
26 simpr ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) )
27 25 26 eqtr3d ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → ( 𝑥 ( .r𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑧 ) ) = ( 0g𝑅 ) )
28 eqid ( 0g𝑅 ) = ( 0g𝑅 )
29 1 6 11 28 rrgeq0i ( ( 𝑥𝐸 ∧ ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑧 ) ) = ( 0g𝑅 ) → ( 𝑦 ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) )
30 29 imp ( ( ( 𝑥𝐸 ∧ ( 𝑦 ( .r𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑧 ) ) = ( 0g𝑅 ) ) → ( 𝑦 ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) )
31 20 23 27 30 syl21anc ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → ( 𝑦 ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) )
32 1 6 11 28 rrgeq0i ( ( 𝑦𝐸𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) → 𝑧 = ( 0g𝑅 ) ) )
33 32 imp ( ( ( 𝑦𝐸𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑦 ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑧 = ( 0g𝑅 ) )
34 18 19 31 33 syl21anc ( ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) ) → 𝑧 = ( 0g𝑅 ) )
35 34 ex ( ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) → 𝑧 = ( 0g𝑅 ) ) )
36 35 ralrimiva ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) → 𝑧 = ( 0g𝑅 ) ) )
37 1 6 11 28 isrrg ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐸 ↔ ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( 0g𝑅 ) → 𝑧 = ( 0g𝑅 ) ) ) )
38 17 36 37 sylanbrc ( ( ( 𝜑𝑥𝐸 ) ∧ 𝑦𝐸 ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐸 )
39 38 anasss ( ( 𝜑 ∧ ( 𝑥𝐸𝑦𝐸 ) ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐸 )
40 39 ralrimivva ( 𝜑 → ∀ 𝑥𝐸𝑦𝐸 ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐸 )
41 2 6 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 )
42 2 9 ringidval ( 1r𝑅 ) = ( 0g𝑀 )
43 2 11 mgpplusg ( .r𝑅 ) = ( +g𝑀 )
44 41 42 43 issubm ( 𝑀 ∈ Mnd → ( 𝐸 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐸 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝐸 ∧ ∀ 𝑥𝐸𝑦𝐸 ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐸 ) ) )
45 44 biimpar ( ( 𝑀 ∈ Mnd ∧ ( 𝐸 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝐸 ∧ ∀ 𝑥𝐸𝑦𝐸 ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐸 ) ) → 𝐸 ∈ ( SubMnd ‘ 𝑀 ) )
46 5 8 10 40 45 syl13anc ( 𝜑𝐸 ∈ ( SubMnd ‘ 𝑀 ) )