Step |
Hyp |
Ref |
Expression |
1 |
|
rrncms.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
2 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
3 |
|
eqid |
⊢ ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) = ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) ∧ 𝑓 : ℕ ⟶ 𝑋 ) → 𝐼 ∈ Fin ) |
5 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) ∧ 𝑓 : ℕ ⟶ 𝑋 ) → 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) |
6 |
|
simpr |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) ∧ 𝑓 : ℕ ⟶ 𝑋 ) → 𝑓 : ℕ ⟶ 𝑋 ) |
7 |
|
eqid |
⊢ ( 𝑚 ∈ 𝐼 ↦ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ 𝐼 ↦ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
rrncmslem |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) ∧ 𝑓 : ℕ ⟶ 𝑋 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) ) ) |
9 |
8
|
ex |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) → ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) ) ) ) |
10 |
9
|
ralrimiva |
⊢ ( 𝐼 ∈ Fin → ∀ 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) ) ) ) |
11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
12 |
|
1zzd |
⊢ ( 𝐼 ∈ Fin → 1 ∈ ℤ ) |
13 |
1
|
rrnmet |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
14 |
11 3 12 13
|
iscmet3 |
⊢ ( 𝐼 ∈ Fin → ( ( ℝn ‘ 𝐼 ) ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) ) ) ) ) |
15 |
10 14
|
mpbird |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( CMet ‘ 𝑋 ) ) |