| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rrnval.1 | 
							⊢ 𝑋  =  ( ℝ  ↑m  𝐼 )  | 
						
						
							| 2 | 
							
								
							 | 
							rrndstprj1.1 | 
							⊢ 𝑀  =  ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							rrncms.3 | 
							⊢ 𝐽  =  ( MetOpen ‘ ( ℝn ‘ 𝐼 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rrncms.4 | 
							⊢ ( 𝜑  →  𝐼  ∈  Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							rrncms.5 | 
							⊢ ( 𝜑  →  𝐹  ∈  ( Cau ‘ ( ℝn ‘ 𝐼 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							rrncms.6 | 
							⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 )  | 
						
						
							| 7 | 
							
								
							 | 
							rrncms.7 | 
							⊢ 𝑃  =  ( 𝑚  ∈  𝐼  ↦  (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							lmrel | 
							⊢ Rel  ( ⇝𝑡 ‘ 𝐽 )  | 
						
						
							| 9 | 
							
								
							 | 
							fvex | 
							⊢ (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) )  ∈  V  | 
						
						
							| 10 | 
							
								9 7
							 | 
							fnmpti | 
							⊢ 𝑃  Fn  𝐼  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑃  Fn  𝐼 )  | 
						
						
							| 12 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 13 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  1  ∈  ℤ )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑡  =  𝑘  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq1d | 
							⊢ ( 𝑡  =  𝑘  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  =  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							fvex | 
							⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  V  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							fvmpt | 
							⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) )  | 
						
						
							| 20 | 
							
								6
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  | 
						
						
							| 21 | 
							
								20 1
							 | 
							eleqtrdi | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℝ  ↑m  𝐼 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							elmapi | 
							⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ )  | 
						
						
							| 24 | 
							
								23
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								24
							 | 
							an32s | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 27 | 
							
								26
							 | 
							recnd | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 28 | 
							
								1
							 | 
							rrnmet | 
							⊢ ( 𝐼  ∈  Fin  →  ( ℝn ‘ 𝐼 )  ∈  ( Met ‘ 𝑋 ) )  | 
						
						
							| 29 | 
							
								4 28
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ℝn ‘ 𝐼 )  ∈  ( Met ‘ 𝑋 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							metxmet | 
							⊢ ( ( ℝn ‘ 𝐼 )  ∈  ( Met ‘ 𝑋 )  →  ( ℝn ‘ 𝐼 )  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ℝn ‘ 𝐼 )  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							1zzd | 
							⊢ ( 𝜑  →  1  ∈  ℤ )  | 
						
						
							| 33 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 35 | 
							
								12 31 32 33 34 6
							 | 
							iscauf | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( Cau ‘ ( ℝn ‘ 𝐼 ) )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥 ) )  | 
						
						
							| 36 | 
							
								5 35
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥 )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥 )  | 
						
						
							| 38 | 
							
								4
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝐼  ∈  Fin )  | 
						
						
							| 39 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑛  ∈  𝐼 )  | 
						
						
							| 40 | 
							
								6
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝐹 : ℕ ⟶ 𝑋 )  | 
						
						
							| 41 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  ℕ )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  ℕ )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  | 
						
						
							| 44 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑗  ∈  ℕ )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 )  | 
						
						
							| 46 | 
							
								1 2
							 | 
							rrndstprj1 | 
							⊢ ( ( ( 𝐼  ∈  Fin  ∧  𝑛  ∈  𝐼 )  ∧  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 47 | 
							
								38 39 43 45 46
							 | 
							syl22anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ≤  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 48 | 
							
								29
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ℝn ‘ 𝐼 )  ∈  ( Met ‘ 𝑋 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							metsym | 
							⊢ ( ( ( ℝn ‘ 𝐼 )  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 50 | 
							
								48 43 45 49
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 51 | 
							
								47 50
							 | 
							breqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 53 | 
							
								2
							 | 
							remet | 
							⊢ 𝑀  ∈  ( Met ‘ ℝ )  | 
						
						
							| 54 | 
							
								53
							 | 
							a1i | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑀  ∈  ( Met ‘ ℝ ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝜑  ∧  𝑛  ∈  𝐼 ) )  | 
						
						
							| 56 | 
							
								55 42 25
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 57 | 
							
								6
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 )  | 
						
						
							| 58 | 
							
								57 1
							 | 
							eleqtrdi | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝐼 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							elmapi | 
							⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ )  | 
						
						
							| 61 | 
							
								60
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 62 | 
							
								61
							 | 
							an32s | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 64 | 
							
								
							 | 
							metcl | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ ℝ )  ∧  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 65 | 
							
								54 56 63 64
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ∈  ℝ )  | 
						
						
							| 67 | 
							
								
							 | 
							metcl | 
							⊢ ( ( ( ℝn ‘ 𝐼 )  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  | 
						
						
							| 68 | 
							
								48 45 43 67
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  | 
						
						
							| 70 | 
							
								
							 | 
							rpre | 
							⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ )  | 
						
						
							| 71 | 
							
								70
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ )  | 
						
						
							| 72 | 
							
								71
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 73 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  ∧  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥 )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥 ) )  | 
						
						
							| 74 | 
							
								66 69 72 73
							 | 
							syl3anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  ≤  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  ∧  ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥 )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥 ) )  | 
						
						
							| 75 | 
							
								52 74
							 | 
							mpand | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥 ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							ralimdva | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥 ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							reximdva | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							ralimdva | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥 ) )  | 
						
						
							| 79 | 
							
								2
							 | 
							remetdval | 
							⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  =  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 80 | 
							
								56 63 79
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  =  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 81 | 
							
								42 18
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑡  =  𝑗  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							fveq1d | 
							⊢ ( 𝑡  =  𝑗  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  | 
						
						
							| 84 | 
							
								
							 | 
							fvex | 
							⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 )  ∈  V  | 
						
						
							| 85 | 
							
								83 16 84
							 | 
							fvmpt | 
							⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  | 
						
						
							| 87 | 
							
								81 86
							 | 
							oveq12d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) )  =  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 89 | 
							
								80 88
							 | 
							eqtr4d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  =  ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							breq1d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥  ↔  ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							ralbidva | 
							⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							rexbidva | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥  ↔  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							ralbidv | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) )  <  𝑥  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) )  | 
						
						
							| 94 | 
							
								78 93
							 | 
							sylibd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) )  | 
						
						
							| 95 | 
							
								37 94
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 )  | 
						
						
							| 96 | 
							
								
							 | 
							nnex | 
							⊢ ℕ  ∈  V  | 
						
						
							| 97 | 
							
								96
							 | 
							mptex | 
							⊢ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ∈  V  | 
						
						
							| 98 | 
							
								97
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ∈  V )  | 
						
						
							| 99 | 
							
								12 27 95 98
							 | 
							caucvg | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ∈  dom   ⇝  )  | 
						
						
							| 100 | 
							
								
							 | 
							climdm | 
							⊢ ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ∈  dom   ⇝   ↔  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ⇝  (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ⇝  (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							mpteq2dv | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) )  =  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							fveq2d | 
							⊢ ( 𝑚  =  𝑛  →  (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) )  =  (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							fvex | 
							⊢ (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) )  ∈  V  | 
						
						
							| 106 | 
							
								104 7 105
							 | 
							fvmpt | 
							⊢ ( 𝑛  ∈  𝐼  →  ( 𝑃 ‘ 𝑛 )  =  (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( 𝑃 ‘ 𝑛 )  =  (  ⇝  ‘ ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 108 | 
							
								101 107
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ⇝  ( 𝑃 ‘ 𝑛 ) )  | 
						
						
							| 109 | 
							
								12 13 108 26
							 | 
							climrecl | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  ( 𝑃 ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 110 | 
							
								109
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝐼 ( 𝑃 ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 111 | 
							
								
							 | 
							ffnfv | 
							⊢ ( 𝑃 : 𝐼 ⟶ ℝ  ↔  ( 𝑃  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑃 ‘ 𝑛 )  ∈  ℝ ) )  | 
						
						
							| 112 | 
							
								11 110 111
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  𝑃 : 𝐼 ⟶ ℝ )  | 
						
						
							| 113 | 
							
								
							 | 
							reex | 
							⊢ ℝ  ∈  V  | 
						
						
							| 114 | 
							
								
							 | 
							elmapg | 
							⊢ ( ( ℝ  ∈  V  ∧  𝐼  ∈  Fin )  →  ( 𝑃  ∈  ( ℝ  ↑m  𝐼 )  ↔  𝑃 : 𝐼 ⟶ ℝ ) )  | 
						
						
							| 115 | 
							
								113 4 114
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 𝑃  ∈  ( ℝ  ↑m  𝐼 )  ↔  𝑃 : 𝐼 ⟶ ℝ ) )  | 
						
						
							| 116 | 
							
								112 115
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝑃  ∈  ( ℝ  ↑m  𝐼 ) )  | 
						
						
							| 117 | 
							
								116 1
							 | 
							eleqtrrdi | 
							⊢ ( 𝜑  →  𝑃  ∈  𝑋 )  | 
						
						
							| 118 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 119 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝐼  ∈  Fin )  | 
						
						
							| 120 | 
							
								20
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  | 
						
						
							| 121 | 
							
								117
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝑃  ∈  𝑋 )  | 
						
						
							| 122 | 
							
								1
							 | 
							rrnmval | 
							⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  =  ( √ ‘ Σ 𝑦  ∈  𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 )  −  ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) )  | 
						
						
							| 123 | 
							
								119 120 121 122
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  =  ( √ ‘ Σ 𝑦  ∈  𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 )  −  ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) )  | 
						
						
							| 124 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝐼  =  ∅ )  | 
						
						
							| 125 | 
							
								124
							 | 
							sumeq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  Σ 𝑦  ∈  𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 )  −  ( 𝑃 ‘ 𝑦 ) ) ↑ 2 )  =  Σ 𝑦  ∈  ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 )  −  ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) )  | 
						
						
							| 126 | 
							
								
							 | 
							sum0 | 
							⊢ Σ 𝑦  ∈  ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 )  −  ( 𝑃 ‘ 𝑦 ) ) ↑ 2 )  =  0  | 
						
						
							| 127 | 
							
								125 126
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  Σ 𝑦  ∈  𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 )  −  ( 𝑃 ‘ 𝑦 ) ) ↑ 2 )  =  0 )  | 
						
						
							| 128 | 
							
								127
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( √ ‘ Σ 𝑦  ∈  𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 )  −  ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) )  =  ( √ ‘ 0 ) )  | 
						
						
							| 129 | 
							
								123 128
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  =  ( √ ‘ 0 ) )  | 
						
						
							| 130 | 
							
								
							 | 
							sqrt0 | 
							⊢ ( √ ‘ 0 )  =  0  | 
						
						
							| 131 | 
							
								129 130
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  =  0 )  | 
						
						
							| 132 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝑥  ∈  ℝ+ )  | 
						
						
							| 133 | 
							
								132
							 | 
							rpgt0d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  0  <  𝑥 )  | 
						
						
							| 134 | 
							
								131 133
							 | 
							eqbrtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  | 
						
						
							| 135 | 
							
								134
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  →  ∀ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  | 
						
						
							| 136 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  1  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 137 | 
							
								136 12
							 | 
							eqtr4di | 
							⊢ ( 𝑗  =  1  →  ( ℤ≥ ‘ 𝑗 )  =  ℕ )  | 
						
						
							| 138 | 
							
								137
							 | 
							raleqdv | 
							⊢ ( 𝑗  =  1  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 139 | 
							
								138
							 | 
							rspcev | 
							⊢ ( ( 1  ∈  ℕ  ∧  ∀ 𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  | 
						
						
							| 140 | 
							
								118 135 139
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  =  ∅ ) )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  | 
						
						
							| 141 | 
							
								140
							 | 
							expr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝐼  =  ∅  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 142 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  1  ∈  ℤ )  | 
						
						
							| 143 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  𝑥  ∈  ℝ+ )  | 
						
						
							| 144 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  𝐼  ≠  ∅ )  | 
						
						
							| 145 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  𝐼  ∈  Fin )  | 
						
						
							| 146 | 
							
								
							 | 
							hashnncl | 
							⊢ ( 𝐼  ∈  Fin  →  ( ( ♯ ‘ 𝐼 )  ∈  ℕ  ↔  𝐼  ≠  ∅ ) )  | 
						
						
							| 147 | 
							
								145 146
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( ( ♯ ‘ 𝐼 )  ∈  ℕ  ↔  𝐼  ≠  ∅ ) )  | 
						
						
							| 148 | 
							
								144 147
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( ♯ ‘ 𝐼 )  ∈  ℕ )  | 
						
						
							| 149 | 
							
								148
							 | 
							nnrpd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( ♯ ‘ 𝐼 )  ∈  ℝ+ )  | 
						
						
							| 150 | 
							
								149
							 | 
							rpsqrtcld | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℝ+ )  | 
						
						
							| 151 | 
							
								143 150
							 | 
							rpdivcld | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ+ )  | 
						
						
							| 152 | 
							
								151
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ+ )  | 
						
						
							| 153 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) )  | 
						
						
							| 154 | 
							
								108
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑡  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) )  ⇝  ( 𝑃 ‘ 𝑛 ) )  | 
						
						
							| 155 | 
							
								12 142 152 153 154
							 | 
							climi2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  | 
						
						
							| 156 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 157 | 
							
								12
							 | 
							rexuz3 | 
							⊢ ( 1  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 158 | 
							
								156 157
							 | 
							ax-mp | 
							⊢ ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  | 
						
						
							| 159 | 
							
								25
							 | 
							adantllr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 160 | 
							
								109
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑃 ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 161 | 
							
								160
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ‘ 𝑛 )  ∈  ℝ )  | 
						
						
							| 162 | 
							
								2
							 | 
							remetdval | 
							⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( 𝑃 ‘ 𝑛 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  =  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) ) )  | 
						
						
							| 163 | 
							
								159 161 162
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  =  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							breq1d | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 165 | 
							
								41 164
							 | 
							sylan2 | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 166 | 
							
								165
							 | 
							anassrs | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							ralbidva | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 168 | 
							
								167
							 | 
							rexbidva | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 169 | 
							
								158 168
							 | 
							bitr3id | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 )  −  ( 𝑃 ‘ 𝑛 ) ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 170 | 
							
								155 169
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  | 
						
						
							| 171 | 
							
								170
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ∀ 𝑛  ∈  𝐼 ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  | 
						
						
							| 172 | 
							
								12
							 | 
							rexuz3 | 
							⊢ ( 1  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 173 | 
							
								156 172
							 | 
							ax-mp | 
							⊢ ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  | 
						
						
							| 174 | 
							
								
							 | 
							rexfiuz | 
							⊢ ( 𝐼  ∈  Fin  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∀ 𝑛  ∈  𝐼 ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 175 | 
							
								145 174
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∀ 𝑛  ∈  𝐼 ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 176 | 
							
								173 175
							 | 
							bitrid | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ∀ 𝑛  ∈  𝐼 ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 177 | 
							
								171 176
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  | 
						
						
							| 178 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝐼  ∈  Fin )  | 
						
						
							| 179 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝐼  ≠  ∅ )  | 
						
						
							| 180 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝐼  ∈  ( Fin  ∖  { ∅ } )  ↔  ( 𝐼  ∈  Fin  ∧  𝐼  ≠  ∅ ) )  | 
						
						
							| 181 | 
							
								178 179 180
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝐼  ∈  ( Fin  ∖  { ∅ } ) )  | 
						
						
							| 182 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  𝐹 : ℕ ⟶ 𝑋 )  | 
						
						
							| 183 | 
							
								182
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  | 
						
						
							| 184 | 
							
								117
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝑃  ∈  𝑋 )  | 
						
						
							| 185 | 
							
								151
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ+ )  | 
						
						
							| 186 | 
							
								1 2
							 | 
							rrndstprj2 | 
							⊢ ( ( ( 𝐼  ∈  ( Fin  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  ∧  ( ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ+  ∧  ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  ( ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ·  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) )  | 
						
						
							| 187 | 
							
								186
							 | 
							expr | 
							⊢ ( ( ( 𝐼  ∈  ( Fin  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ∈  ℝ+ )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  ( ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ·  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 188 | 
							
								181 183 184 185 187
							 | 
							syl31anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  ( ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ·  ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) )  | 
						
						
							| 189 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝑥  ∈  ℝ+ )  | 
						
						
							| 190 | 
							
								189
							 | 
							rpcnd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  𝑥  ∈  ℂ )  | 
						
						
							| 191 | 
							
								150
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℝ+ )  | 
						
						
							| 192 | 
							
								191
							 | 
							rpcnd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ∈  ℂ )  | 
						
						
							| 193 | 
							
								191
							 | 
							rpne0d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( √ ‘ ( ♯ ‘ 𝐼 ) )  ≠  0 )  | 
						
						
							| 194 | 
							
								190 192 193
							 | 
							divcan1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ·  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  =  𝑥 )  | 
						
						
							| 195 | 
							
								194
							 | 
							breq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  ( ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ·  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  ↔  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 196 | 
							
								188 195
							 | 
							sylibd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  ℕ )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 197 | 
							
								41 196
							 | 
							sylan2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 199 | 
							
								198
							 | 
							ralimdva | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 200 | 
							
								199
							 | 
							reximdva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) )  <  ( 𝑥  /  ( √ ‘ ( ♯ ‘ 𝐼 ) ) )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 201 | 
							
								177 200
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  𝐼  ≠  ∅ ) )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  | 
						
						
							| 202 | 
							
								201
							 | 
							expr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝐼  ≠  ∅  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) )  | 
						
						
							| 203 | 
							
								141 202
							 | 
							pm2.61dne | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  | 
						
						
							| 204 | 
							
								203
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 )  | 
						
						
							| 205 | 
							
								3 31 12 32 33 6
							 | 
							lmmbrf | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 206 | 
							
								117 204 205
							 | 
							mpbir2and | 
							⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  | 
						
						
							| 207 | 
							
								
							 | 
							releldm | 
							⊢ ( ( Rel  ( ⇝𝑡 ‘ 𝐽 )  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  𝐹  ∈  dom  ( ⇝𝑡 ‘ 𝐽 ) )  | 
						
						
							| 208 | 
							
								8 206 207
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝐹  ∈  dom  ( ⇝𝑡 ‘ 𝐽 ) )  |